Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 9 Sayı: 2, 16 - 26, 31.12.2023

Öz

Kaynakça

  • AHMAD, P., PRASAD, M.N.V. (2011). Abiotic stress responses in plants. Springer Science+Business Media, Library of Congress Control Number: 2011940823.
  • BROADLY, M., BROWN, P., CAKMAK, I., RENGEL, Z., ZHAO, F. (2012). Function of nutrients: micronutrients. In: Marschner P (ed) Marschner’s mineral nutrition in higher plants. Academic Press, Cambridge pp.191–248.
  • CALABRESE, E.J., BALDWIN, L.A. (2003). Inorganics and hormesis. Critical Reviews in Toxicology, 33(3&4): 215–304.
  • CRUZ-JIMENEZ, G, PERALTA-VIDEA, J.R., ROSA, G., MEITZNER, G., PARSONS, J.G., GARDEA-TORRESDEY, J.L. (2005). Effect of sulfate on selenium uptake and chemical speciation in Convolvulus arvensis L. Environmental Chemistry, 2: 100–107.
  • DUMLUPINAR, R., DEMIR, F., BUDAK, G., KARABULUT, A., KADI, N. et al. (2007). Determination of replacement of some inorganic elements in pulvinus of bean (Phaseolus vul¬garis cv. Gina at chilling temperature by the WDXRF spectroscopic technique. J Quant Spectrosc Ra, 103: 331-9.
  • ERDAL, S., DUMLUPINAR, R. (2011). Exogenously treated mammalian sex hormones affect inorganic constituents of plants. Biol Trace Elem Res, 143: 500-6.
  • FABIANO, C.C., TEZOTTO, T., FAVARIN, J.L., POLACCO, J.C., MAZZAFERA, P. (2015). Essentiality of nickel in plants: a role in plant stresses. Front Plant Sci, 6:754.
  • FUNG, K.F., CARR, H.P., ZHANG, J.H., WONG, M.H. (2008). Growth and nutrient uptake of tea under different aluminium concentrations. J Sci Food Agric, 88: 1582–1591.
  • GENISEL, M., TURK, H., ERDAL, S., SISMAN, T., DEMIR, Y. et al. (2015). Changes in inorganic composition and accumulation of heavy metals in aquatic plants growing in the areas contaminated by cement factory. J Environ Prot Ecol, 16: 1297-306.
  • GENISEL, M., ERDAL, S., TURK, H., DUMLUPINAR, R. (2012). The availability of bone powder as inorganic element source on growth and development in wheat seedlings. Toxicol Ind Health, 28: 458-62.
  • GORCEK, Z, ERDAL, S. (2015). Lipoic acid mitigates oxidative stress and recovers metabolic distortions in salt stressed wheat seedlings by modulating ion homeostasis, the osmo-regulator level and antioxidant system. J Sci Food Agr, 95:2811–2817.
  • GORCEK, Z. (2013). Determination of molecular and biochemical effects of lipoic acid on alleviation of salt stress-induced oxidative damage in wheat plants. (Master thesis). Ataturk University/ Erzurum.
  • GUEGUEN, V., MACHEREL, D., JAQUINOD, M., DOUCE, R., BOURGUIGNON, J. (2000). Fatty acid and lipoic acid biosynthesis in higher plant mitochondria. Journal of Biological Chemistry, 275(7): 5016-5025.
  • HORST, W.J., ASHER, C.J., CAKMAK, J., SZULKIEWICZ, P., WISSEMEIER, A.H. (1992). Short-term responses of soybean roots to aluminum. J Plant Physio, 140: 174–178.
  • KAISE, B.N., GRIDLEY, K.L., BRADY, J.N., PHILLIPS, T., TYERMAN, S..D (2005). The role of molybdenum in agricultural plant production. Annals Bot, 96(5): 745–754.
  • KARACA, E.G. (2008). Lipoic acid: an universal antioxidant. Journal Of Science, 8(1): 232-246.
  • KARAYEL, U. (2019). Investigation of exogenous lipoic acid maize germination and post germination effects at physiological, biochemical and molecular level. (Master thesis). Ataturk University/Erzurum.
  • KOCHIAN, L.V., HOEKENGA, O.A., PIÑEROS, M.A. (2004). How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol, 55: 459–493.
  • MARSCHNER, H. (1995). Mineral nutrition of higher plants. 2nd ed. Academic Press, Cambridge, UK.
  • MARSCHNER, P. (2012). Marschner’s mineral nutrition of higher plants. 3hrd ed. Academic Press, USA.
  • MENDEL, R.R., HANSCH, R. (2002). Molybdoenzymes and molybdenum cofactor in plants. J Exp Bot, 53(375): 1689–1698.
  • MENGEL, K., KIRKBY, F.A., KOSEGARTEN, H., APPEL, T. (2001). Further elements of importance. In: Mengel K, Kirkby FA, Kosegarten H, Appel T (eds) Principals of Plant Nutrition, 4th edition, Springer, Dodrecht, The Netherlands, pp. 639-655.
  • MILLALEO, R., REYES-DIAZ, M., ALBERDI, M., IVANOV, A.G., KROL, M., HUNER, N.P. (2013). Excess manganese differentially inhibits photosystem I versus II in Arabidopsis thaliana. J Exp Bot, 64: 343–354.
  • MUKHOPADYAY, M., BANTAWA, P., DAS, A., SARKAR, B., BERA, B., GHOSH, P., MONDAL, T.K. (2012). Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea [Camellia sinensis (L.) O. Kuntze] seedlings under aluminum stress. Bio Metals, 25: 1141–1154.
  • NAVARI-IZZO, F., QUARTACCI, M.F., SGHERRI, C. (2002). Lipoic acid: a unique antioxidant in the detoxification of activated oxygen species. Plant Physiol Bioch, 40: 463–470.
  • PACKER, L., CADENAS, E. (2011). Lipoic acid: energy metabolism and redox regulation of transcription and cell signaling. Journal of Clinical Biochemical Nutrition, 48 (1): 26-32.
  • PAZURKIEWICZ-KOCOT, K., KITA, A., PIETRUSZKA, M. (2008). Effect of selenium on magnesium, iron, manganese, copper, and zinc accumulation in corn treated by indole‐3‐acetic acid. Communications in Soil Science and Plant Analysis, 39: 2303–2318.
  • PAZURKIEWICZ-KOCOT, K., GALAS, W., KITA, A. (2003). The effect of selenium on the accumulation of some metals in Zea mays L. plants treated with indole-3- acetic acid. Cellular and Molecular Biology Letters, 8. 97–103.
  • RYAN, P.R., DELHAIZE, E.P., RANDALL. J. (1995). Characterization of Al stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta, 196: 103–110.
  • SAJWAN, K.S., PARAMASIVAM, S., RICHARDSON, J.P., ALVA, A.K. (2003). Preliminary assessment of soybean seedlings for beryllium accumulation. Journal of Plant Nutrition, 26(2): 331-339.
  • SANDERS, D., BROWNLEE, C., HARPER, J.F. (1999). Communicating with calcium. Plant Cell, 11: 691–706. SAUER, P., FREBORT, I. (2003). Molybdenum cofactor-containing oxidoreductase family in plants. Biol Plant, 46(4): 481–490.
  • SEARS, M.E. (2013). Chelation: harnessing and enhancing heavy metal detoxification – A review. The Scientific World Journal, 1-13. https://doi.org/10.1155/2013/219840
  • SGHERRI, C., QUARTACCI, M.F., IZZO, R., NAVARI-IZZO, F. (2002). Relation between lipoic acid and cell redox status in wheat grown in excess copper. Plant Physiol Bioch, 40: 591–597.
  • SHAHZAD, B., TANVEER, M., REHMAN, A., CHEEMA, S.A., FAHAD, S., REHMAN, S., ANKET, S. (2018). Nickel; whether toxic or essential for plants and environment—A review. Plant Physiol Biochem, 132: 641–651.
  • STALLMEYER, B., SCHWARZ, G., SCHULZE, J., NERLICH, A., REISS, J., KIRSCH, J., MENDEL, R.R. (1999). The neurotransmitter receptor-anchoring protein gephyrin reconstitutes molybdenum cofactor biosynthesis in bacteria, plants, and mammalian cells. PNAS, 96 (4): 1333-1338. https://doi.org/10.1073/pnas.96.4.1333
  • SUN, L., ZHANG, M., LIU, X., MAO, Q., SHI, C., KOCHIA, L.V., LIAO, H. (2020). Aluminum is essential for root growth and development of tea plants (Camellia sinensis). Journal of Integrative Plant Biology, 62(7): 984–997.
  • TAIZ, L., ZEIGER, E. (2003). Plant Physiology. Mineral nutrition. 3rd ed. Sunderland: Sinauer Associates. pp.68-84.
  • TARCHOUNE, I., SGHERRI, C., BAÂTOUR, O., IZZO, R., LACHAÂL, M., NAVARI-IZZO, F., OUERGHI, Z. (2013). Effects of oxidative stress caused by NaCl or Na2SO4 excess on lipoic acid and tocopherols in Genovese and Fine basil (Ocimum basilicum). Annals of Aplied Biology, 163(1):1-164.
  • TERRY, N., ZAYED, A.M., DE SOUZA M.P., TARUN, A.S. (2000). Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 51: 401–432.
  • TURK, H. (2019). Exogenously treated carnitine upregulates the contents of macro and micro- elements in the leaves of maize (Zea Mays Cv. Hido) seedlings. J Plant Sci Crop Protec, 2(2): 201.
  • TURK, H., ERDAL, S. (2015). Melatonin alleviates cold-induced oxidative damage in maize seedlings by up-regulating mineral elements and enhancing antioxidant activity. J Plant Nutr Soil Sci, 178: 433-9.
  • TURK, H., GENISEL, M., ERDAL, S. (2016). Regulation of ion homeostasis by aminolevunilic acid in salt-stressed wheat seedlings. AIP Conference Proceedings, 1726 (1): 020027. https://doi.org/10.1063/1.4945853.
  • TURK, H., ERDAL, S., KARAYEL, U., DUMLUPINAR, R. (2018). Attenuation of lead toxicity by promotion of tolerance mechanism in wheat roots by lipoic acid. Cereal Res. Commun, 46: 424-35.
  • VATANSEVER, R., OZYIGIT, I.I., FILIZ, E. (2017). Essential and beneficial trace elements in plants, and their transport in roots: A review. Appl Biochem Biotechnol, 181: 464–482.
  • WILLIAMS, R.J.B., LE RICHE, H.H. (1968). The effect of traces of beryllium on the growth of kale, grass, and mustard. Plant Soil, 29: 317–326.
  • YANG, T.J.W., PERRY, P.J., CIANI, S., PANDIAN, S., SCHMIDT, W. (2008). Manganese deficiency alters the patterning and development of root hairs in Arabidopsis. Journal of Experimental Botany, 59(12): 3453–3464.
  • YASUNO, R., WADA, H. (2002). The biosynthetic pathway for lipoic acid is present in plastids and mitochondria in Arabidopsis thaliana. Febs Lett, 517: 110–114.
  • YILDIZ, M., AKCALI, N., TERZI, H. (2015). Proteomic and biochemical responses of canola (Brassica napus L.) exposed to salinity stress and exogenous lipoic acid. J Plant Physiol, 179: 90–99.

Effects of Exogen Lipoic Acid on the Mineral Compositions of Maize

Yıl 2023, Cilt: 9 Sayı: 2, 16 - 26, 31.12.2023

Öz

This study, which does not aim to research the possible modulating role of exogenous lipoic acid supplementation on the inorganic composition of the root, coleoptile and endosperm of germinated maize, is the first one in the literature. Maize seeds were germinated with lipoic acid at concentrations of 10, 15, 25 and 30 μmol L-1 for 4 days as defined in the material method section for the study. Macro elements (magnesium (Mg), phosphorus (P), potassium (K) and calcium (Ca)), the concentrations of essential and nonessential micro elements (boron (B), manganese (Mn), iron (Fe), nickel (Ni), copper(Cu), zinc (Zn), beryllium (Be), aluminum (Al), selenium (Se) and molybdenum (Mo)) were analyzed using ICP-MS technique in root, coleoptile and endosperm of maize plant. When roots and coleoptiles treated with all lipoic acid applications compared with control groups, an important decrease was determined in endosperms (except for Mn) while a significant increase was recorded in Mg, P, K, Ca, B, Mn, Fe, Ni, Cu, Zn, Be, Se, Mo and Al contents (except for A1 in coleoptile groups). When taking account of the maximum changes in the concentrations of the analyzed elements, the best results were obtained in the application of 25 μmol L-1 lipoic acid. It can be said that the application of lipoic acid significantly affects the inorganic composition of the plant by increasing the inorganic element contents in maize through its transport from the endosperms to the roots and coleoptiles when all the results are considered together.

Kaynakça

  • AHMAD, P., PRASAD, M.N.V. (2011). Abiotic stress responses in plants. Springer Science+Business Media, Library of Congress Control Number: 2011940823.
  • BROADLY, M., BROWN, P., CAKMAK, I., RENGEL, Z., ZHAO, F. (2012). Function of nutrients: micronutrients. In: Marschner P (ed) Marschner’s mineral nutrition in higher plants. Academic Press, Cambridge pp.191–248.
  • CALABRESE, E.J., BALDWIN, L.A. (2003). Inorganics and hormesis. Critical Reviews in Toxicology, 33(3&4): 215–304.
  • CRUZ-JIMENEZ, G, PERALTA-VIDEA, J.R., ROSA, G., MEITZNER, G., PARSONS, J.G., GARDEA-TORRESDEY, J.L. (2005). Effect of sulfate on selenium uptake and chemical speciation in Convolvulus arvensis L. Environmental Chemistry, 2: 100–107.
  • DUMLUPINAR, R., DEMIR, F., BUDAK, G., KARABULUT, A., KADI, N. et al. (2007). Determination of replacement of some inorganic elements in pulvinus of bean (Phaseolus vul¬garis cv. Gina at chilling temperature by the WDXRF spectroscopic technique. J Quant Spectrosc Ra, 103: 331-9.
  • ERDAL, S., DUMLUPINAR, R. (2011). Exogenously treated mammalian sex hormones affect inorganic constituents of plants. Biol Trace Elem Res, 143: 500-6.
  • FABIANO, C.C., TEZOTTO, T., FAVARIN, J.L., POLACCO, J.C., MAZZAFERA, P. (2015). Essentiality of nickel in plants: a role in plant stresses. Front Plant Sci, 6:754.
  • FUNG, K.F., CARR, H.P., ZHANG, J.H., WONG, M.H. (2008). Growth and nutrient uptake of tea under different aluminium concentrations. J Sci Food Agric, 88: 1582–1591.
  • GENISEL, M., TURK, H., ERDAL, S., SISMAN, T., DEMIR, Y. et al. (2015). Changes in inorganic composition and accumulation of heavy metals in aquatic plants growing in the areas contaminated by cement factory. J Environ Prot Ecol, 16: 1297-306.
  • GENISEL, M., ERDAL, S., TURK, H., DUMLUPINAR, R. (2012). The availability of bone powder as inorganic element source on growth and development in wheat seedlings. Toxicol Ind Health, 28: 458-62.
  • GORCEK, Z, ERDAL, S. (2015). Lipoic acid mitigates oxidative stress and recovers metabolic distortions in salt stressed wheat seedlings by modulating ion homeostasis, the osmo-regulator level and antioxidant system. J Sci Food Agr, 95:2811–2817.
  • GORCEK, Z. (2013). Determination of molecular and biochemical effects of lipoic acid on alleviation of salt stress-induced oxidative damage in wheat plants. (Master thesis). Ataturk University/ Erzurum.
  • GUEGUEN, V., MACHEREL, D., JAQUINOD, M., DOUCE, R., BOURGUIGNON, J. (2000). Fatty acid and lipoic acid biosynthesis in higher plant mitochondria. Journal of Biological Chemistry, 275(7): 5016-5025.
  • HORST, W.J., ASHER, C.J., CAKMAK, J., SZULKIEWICZ, P., WISSEMEIER, A.H. (1992). Short-term responses of soybean roots to aluminum. J Plant Physio, 140: 174–178.
  • KAISE, B.N., GRIDLEY, K.L., BRADY, J.N., PHILLIPS, T., TYERMAN, S..D (2005). The role of molybdenum in agricultural plant production. Annals Bot, 96(5): 745–754.
  • KARACA, E.G. (2008). Lipoic acid: an universal antioxidant. Journal Of Science, 8(1): 232-246.
  • KARAYEL, U. (2019). Investigation of exogenous lipoic acid maize germination and post germination effects at physiological, biochemical and molecular level. (Master thesis). Ataturk University/Erzurum.
  • KOCHIAN, L.V., HOEKENGA, O.A., PIÑEROS, M.A. (2004). How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol, 55: 459–493.
  • MARSCHNER, H. (1995). Mineral nutrition of higher plants. 2nd ed. Academic Press, Cambridge, UK.
  • MARSCHNER, P. (2012). Marschner’s mineral nutrition of higher plants. 3hrd ed. Academic Press, USA.
  • MENDEL, R.R., HANSCH, R. (2002). Molybdoenzymes and molybdenum cofactor in plants. J Exp Bot, 53(375): 1689–1698.
  • MENGEL, K., KIRKBY, F.A., KOSEGARTEN, H., APPEL, T. (2001). Further elements of importance. In: Mengel K, Kirkby FA, Kosegarten H, Appel T (eds) Principals of Plant Nutrition, 4th edition, Springer, Dodrecht, The Netherlands, pp. 639-655.
  • MILLALEO, R., REYES-DIAZ, M., ALBERDI, M., IVANOV, A.G., KROL, M., HUNER, N.P. (2013). Excess manganese differentially inhibits photosystem I versus II in Arabidopsis thaliana. J Exp Bot, 64: 343–354.
  • MUKHOPADYAY, M., BANTAWA, P., DAS, A., SARKAR, B., BERA, B., GHOSH, P., MONDAL, T.K. (2012). Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea [Camellia sinensis (L.) O. Kuntze] seedlings under aluminum stress. Bio Metals, 25: 1141–1154.
  • NAVARI-IZZO, F., QUARTACCI, M.F., SGHERRI, C. (2002). Lipoic acid: a unique antioxidant in the detoxification of activated oxygen species. Plant Physiol Bioch, 40: 463–470.
  • PACKER, L., CADENAS, E. (2011). Lipoic acid: energy metabolism and redox regulation of transcription and cell signaling. Journal of Clinical Biochemical Nutrition, 48 (1): 26-32.
  • PAZURKIEWICZ-KOCOT, K., KITA, A., PIETRUSZKA, M. (2008). Effect of selenium on magnesium, iron, manganese, copper, and zinc accumulation in corn treated by indole‐3‐acetic acid. Communications in Soil Science and Plant Analysis, 39: 2303–2318.
  • PAZURKIEWICZ-KOCOT, K., GALAS, W., KITA, A. (2003). The effect of selenium on the accumulation of some metals in Zea mays L. plants treated with indole-3- acetic acid. Cellular and Molecular Biology Letters, 8. 97–103.
  • RYAN, P.R., DELHAIZE, E.P., RANDALL. J. (1995). Characterization of Al stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta, 196: 103–110.
  • SAJWAN, K.S., PARAMASIVAM, S., RICHARDSON, J.P., ALVA, A.K. (2003). Preliminary assessment of soybean seedlings for beryllium accumulation. Journal of Plant Nutrition, 26(2): 331-339.
  • SANDERS, D., BROWNLEE, C., HARPER, J.F. (1999). Communicating with calcium. Plant Cell, 11: 691–706. SAUER, P., FREBORT, I. (2003). Molybdenum cofactor-containing oxidoreductase family in plants. Biol Plant, 46(4): 481–490.
  • SEARS, M.E. (2013). Chelation: harnessing and enhancing heavy metal detoxification – A review. The Scientific World Journal, 1-13. https://doi.org/10.1155/2013/219840
  • SGHERRI, C., QUARTACCI, M.F., IZZO, R., NAVARI-IZZO, F. (2002). Relation between lipoic acid and cell redox status in wheat grown in excess copper. Plant Physiol Bioch, 40: 591–597.
  • SHAHZAD, B., TANVEER, M., REHMAN, A., CHEEMA, S.A., FAHAD, S., REHMAN, S., ANKET, S. (2018). Nickel; whether toxic or essential for plants and environment—A review. Plant Physiol Biochem, 132: 641–651.
  • STALLMEYER, B., SCHWARZ, G., SCHULZE, J., NERLICH, A., REISS, J., KIRSCH, J., MENDEL, R.R. (1999). The neurotransmitter receptor-anchoring protein gephyrin reconstitutes molybdenum cofactor biosynthesis in bacteria, plants, and mammalian cells. PNAS, 96 (4): 1333-1338. https://doi.org/10.1073/pnas.96.4.1333
  • SUN, L., ZHANG, M., LIU, X., MAO, Q., SHI, C., KOCHIA, L.V., LIAO, H. (2020). Aluminum is essential for root growth and development of tea plants (Camellia sinensis). Journal of Integrative Plant Biology, 62(7): 984–997.
  • TAIZ, L., ZEIGER, E. (2003). Plant Physiology. Mineral nutrition. 3rd ed. Sunderland: Sinauer Associates. pp.68-84.
  • TARCHOUNE, I., SGHERRI, C., BAÂTOUR, O., IZZO, R., LACHAÂL, M., NAVARI-IZZO, F., OUERGHI, Z. (2013). Effects of oxidative stress caused by NaCl or Na2SO4 excess on lipoic acid and tocopherols in Genovese and Fine basil (Ocimum basilicum). Annals of Aplied Biology, 163(1):1-164.
  • TERRY, N., ZAYED, A.M., DE SOUZA M.P., TARUN, A.S. (2000). Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 51: 401–432.
  • TURK, H. (2019). Exogenously treated carnitine upregulates the contents of macro and micro- elements in the leaves of maize (Zea Mays Cv. Hido) seedlings. J Plant Sci Crop Protec, 2(2): 201.
  • TURK, H., ERDAL, S. (2015). Melatonin alleviates cold-induced oxidative damage in maize seedlings by up-regulating mineral elements and enhancing antioxidant activity. J Plant Nutr Soil Sci, 178: 433-9.
  • TURK, H., GENISEL, M., ERDAL, S. (2016). Regulation of ion homeostasis by aminolevunilic acid in salt-stressed wheat seedlings. AIP Conference Proceedings, 1726 (1): 020027. https://doi.org/10.1063/1.4945853.
  • TURK, H., ERDAL, S., KARAYEL, U., DUMLUPINAR, R. (2018). Attenuation of lead toxicity by promotion of tolerance mechanism in wheat roots by lipoic acid. Cereal Res. Commun, 46: 424-35.
  • VATANSEVER, R., OZYIGIT, I.I., FILIZ, E. (2017). Essential and beneficial trace elements in plants, and their transport in roots: A review. Appl Biochem Biotechnol, 181: 464–482.
  • WILLIAMS, R.J.B., LE RICHE, H.H. (1968). The effect of traces of beryllium on the growth of kale, grass, and mustard. Plant Soil, 29: 317–326.
  • YANG, T.J.W., PERRY, P.J., CIANI, S., PANDIAN, S., SCHMIDT, W. (2008). Manganese deficiency alters the patterning and development of root hairs in Arabidopsis. Journal of Experimental Botany, 59(12): 3453–3464.
  • YASUNO, R., WADA, H. (2002). The biosynthetic pathway for lipoic acid is present in plastids and mitochondria in Arabidopsis thaliana. Febs Lett, 517: 110–114.
  • YILDIZ, M., AKCALI, N., TERZI, H. (2015). Proteomic and biochemical responses of canola (Brassica napus L.) exposed to salinity stress and exogenous lipoic acid. J Plant Physiol, 179: 90–99.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Fizyolojisi
Bölüm Makaleler
Yazarlar

Hülya Türk 0000-0002-4896-9887

Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 25 Kasım 2023
Kabul Tarihi 12 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 9 Sayı: 2

Kaynak Göster

APA Türk, H. (2023). Effects of Exogen Lipoic Acid on the Mineral Compositions of Maize. Eastern Anatolian Journal of Science, 9(2), 16-26.
AMA Türk H. Effects of Exogen Lipoic Acid on the Mineral Compositions of Maize. Eastern Anatolian Journal of Science. Aralık 2023;9(2):16-26.
Chicago Türk, Hülya. “Effects of Exogen Lipoic Acid on the Mineral Compositions of Maize”. Eastern Anatolian Journal of Science 9, sy. 2 (Aralık 2023): 16-26.
EndNote Türk H (01 Aralık 2023) Effects of Exogen Lipoic Acid on the Mineral Compositions of Maize. Eastern Anatolian Journal of Science 9 2 16–26.
IEEE H. Türk, “Effects of Exogen Lipoic Acid on the Mineral Compositions of Maize”, Eastern Anatolian Journal of Science, c. 9, sy. 2, ss. 16–26, 2023.
ISNAD Türk, Hülya. “Effects of Exogen Lipoic Acid on the Mineral Compositions of Maize”. Eastern Anatolian Journal of Science 9/2 (Aralık 2023), 16-26.
JAMA Türk H. Effects of Exogen Lipoic Acid on the Mineral Compositions of Maize. Eastern Anatolian Journal of Science. 2023;9:16–26.
MLA Türk, Hülya. “Effects of Exogen Lipoic Acid on the Mineral Compositions of Maize”. Eastern Anatolian Journal of Science, c. 9, sy. 2, 2023, ss. 16-26.
Vancouver Türk H. Effects of Exogen Lipoic Acid on the Mineral Compositions of Maize. Eastern Anatolian Journal of Science. 2023;9(2):16-2.