Araştırma Makalesi
BibTex RIS Kaynak Göster

Production of Ferronickel from Mill-scale via Metallothermic Process

Yıl 2020, , 824 - 834, 31.05.2020
https://doi.org/10.31202/ecjse.702804

Öz

In this study, the production of ferronickel (Fe-Ni), which is an iron-based alloy, was carried out by aluminothermic methods. Mill scale obtained from continuous casting process was used as starting material. Mill scale is oxidized layers of steel alloys containing iron oxide with +2 and +3 values, it is formed on the surface of slabs and billets during annealing process at integrated iron and steel plants. In the metallothermic experiments, effect of aluminium (Al) powder addition to various ratios of starting oxide powders (mill scale (Fe, Fe2O3, FeO, Fe3O4), NiO) on metal recovery and alloy compositions were investigated. Before the experiments, reduction conditions were simulated via FactSage 6.4 database and convenient stoichiometric ratios were determined. Samples were characterized by chemical analysis (AAS), XRD, XRF and optical microscopy techniques. Highest metal recovery was obtained as 81.24% by using 110% stoichiometric Al containing mixture.

Kaynakça

  • [1] Martin M. I., Lopez F. A., Torralba J.M., 2012. Production of Sponge Iron Powder by Reduction of Rolling Mill Scale, Ironmaking & Steelmaking, 2012, 39 (3), 155-162.
  • [2] Cho S., Lee J., Metal Recovery from Stainless Steel Mill Scale by Microwave Heating, Metals and Materials International, 2008, 14 (2), 193-196.
  • [3] Türkiye Çelik Üreticileri Derneği, Demir Çelik Cüruf Raporu, 2015, Ankara, Türkiye.
  • [4] Legodi M. A., De Waal D., The Preparation of Magnetite, Goethite, Hematite and Maghemite of Pigment Quality from Mill Scale Iron Waste, Dyes and Pigments, 2007, 74 (1): 161-68.
  • [5] Wang Z., Pinson D., Chew S., Monaghan B. J., Pownceby M. I, Webster N. A. S., Rogers H., Zhang G., Effect of Addition of Mill Scale on Sintering of Iron Ores, Metallurgical and Materials Transactions B, 2016, 47 (5), 2848-2860.
  • [6] Martin M. I., Lopez F. A., Alguacil F. J., Use of By-Products of the Steelmaking Industry for Removing Pb+2 Ions from Aqueous Effluents, 1st Spanish National Conference on Advances in Materials Recycling and Eco-Energy, 34-37, 12-13 Kasım 2009, Madrid, İspanya.
  • [7] Murthy Y. I., Stabilization of Expansive Soil Using Mill Scale, International Journal of Engineering Science and Technology, 2012, 4 (2), 629-632.
  • [8] Azad A. M., Kesavan S., Al-Batty S., Redemption of Microscale Mill Waste into Commercial Nano Scale Asset, Key Engineering Materials, 2008, 380, 229-255.
  • [9] Bantsis, G., Sikalidis C., Betsiou M., Yioultsis T., Xenos Th., Electromagnetic Absorption, Reflection and Interference Shielding in X-band Frequency Range of Low Cost Ceramic Building Bricks and Sandwich Type Ceramic Tiles Using Mill Scale Waste as an Admixture, Ceramics International, 2011, 37 (8), 3535-3545.
  • [10] Crundwell, F. K., Moats, M. S., Ramachandran V., Robinson T. G., Davenport, W. G., Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, 2011, Amsterdam.
  • [11] Gasik, M., Handbook of Ferroalloys: Theory and Technology, Butterworth Heinemann, 2013 Oxford.
  • [12] Engels, S., Nowak, A., Auf der Spur der Elemente (Searching for the Elements) (3rd Ed.), VEB Deutscher Verlag für Grundstoffindustrie, 1983, Leipzig.
  • [13] Tylecote, R. F., History of Metallurgy (3rd Ed.), The Metals Society, 1984, London.
  • [14] Volkert, G., Frank, K. D., Metallurgie der Ferrolegierungen, 2nd edition, Springer-Verlag, 1972, Berlin.
  • [15] Gungor M. N., Benzesik K., Bugdayci M., Yucel O., Production of Molybdenum, Nickel, Chromium Containing Iron Based Alloys Via Metallothermic Process, XIV. INFACON: International Ferro-Alloys Congress, 2015, Kiev, Ukrayna.
  • [16] Turan A., Bugdayci M., Yucel O., Self-propagating High Temperature Synthesis of TiB2, High Temperature Materials and Processes, 2014, 34 (2), 185–193.
  • [17] Bale, C. W., Bélisle E, Chartrand P., Decterov S. A., Eriksson G., Hack K., Jung I.-H., FactSage Thermochemical Software and Databases - Recent Developments, Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33 (2), 295-311.

Sürekli Döküm Tufalinden Metalotermik Yöntemle Ferronikel Üretimi

Yıl 2020, , 824 - 834, 31.05.2020
https://doi.org/10.31202/ecjse.702804

Öz

Bu çalışmada, sürekli döküm işlemlerinden elde edilen tufalden başlayarak ve alüminotermik yöntem kullanarak bir demir bazlı alaşım olan ferronikelin üretimi gerçekleştirilmiştir. Tufaller entegre demir-çelik üretim tesislerinde tavlama işlemi sırasında kütüklerin yüzeyinde oluşan ve +2 ile +3 değerlikli demir oksit içeren oksitlenmiş çelik tabakalarıdır. Metalotermik deneylerde, farklı başlangıç karışım oranlarındaki oksit tozlarına (Tufal (Fe, FeO, Fe203, Fe304), NiO) alüminyum (Al) tozunun ilavesinin metal geri kazanım verimleri ve sonuç ürün alaşım bileşimleri üzerindeki etkileri incelenmiştir. Deneylerden önce indirgeme koşulları FactSage 6.4 veri tabanı üzerinden modellenerek uygun stokiyometrik bileşimler belirlenmiştir. Deneysel çalışmalar neticesinde elde edilen örnekler kimyasal analiz (AAS), XRD, XRF ve optik mikroskopi teknikleri kullanılarak karakterize edilmiştir. Deneyler sonucunda en yüksek metal kazanım verimi %110 stokiyometrik bileşimde Al kullanılan deneyde elde edilmiş ve bu değer %81.24 olmuştur.

Kaynakça

  • [1] Martin M. I., Lopez F. A., Torralba J.M., 2012. Production of Sponge Iron Powder by Reduction of Rolling Mill Scale, Ironmaking & Steelmaking, 2012, 39 (3), 155-162.
  • [2] Cho S., Lee J., Metal Recovery from Stainless Steel Mill Scale by Microwave Heating, Metals and Materials International, 2008, 14 (2), 193-196.
  • [3] Türkiye Çelik Üreticileri Derneği, Demir Çelik Cüruf Raporu, 2015, Ankara, Türkiye.
  • [4] Legodi M. A., De Waal D., The Preparation of Magnetite, Goethite, Hematite and Maghemite of Pigment Quality from Mill Scale Iron Waste, Dyes and Pigments, 2007, 74 (1): 161-68.
  • [5] Wang Z., Pinson D., Chew S., Monaghan B. J., Pownceby M. I, Webster N. A. S., Rogers H., Zhang G., Effect of Addition of Mill Scale on Sintering of Iron Ores, Metallurgical and Materials Transactions B, 2016, 47 (5), 2848-2860.
  • [6] Martin M. I., Lopez F. A., Alguacil F. J., Use of By-Products of the Steelmaking Industry for Removing Pb+2 Ions from Aqueous Effluents, 1st Spanish National Conference on Advances in Materials Recycling and Eco-Energy, 34-37, 12-13 Kasım 2009, Madrid, İspanya.
  • [7] Murthy Y. I., Stabilization of Expansive Soil Using Mill Scale, International Journal of Engineering Science and Technology, 2012, 4 (2), 629-632.
  • [8] Azad A. M., Kesavan S., Al-Batty S., Redemption of Microscale Mill Waste into Commercial Nano Scale Asset, Key Engineering Materials, 2008, 380, 229-255.
  • [9] Bantsis, G., Sikalidis C., Betsiou M., Yioultsis T., Xenos Th., Electromagnetic Absorption, Reflection and Interference Shielding in X-band Frequency Range of Low Cost Ceramic Building Bricks and Sandwich Type Ceramic Tiles Using Mill Scale Waste as an Admixture, Ceramics International, 2011, 37 (8), 3535-3545.
  • [10] Crundwell, F. K., Moats, M. S., Ramachandran V., Robinson T. G., Davenport, W. G., Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, 2011, Amsterdam.
  • [11] Gasik, M., Handbook of Ferroalloys: Theory and Technology, Butterworth Heinemann, 2013 Oxford.
  • [12] Engels, S., Nowak, A., Auf der Spur der Elemente (Searching for the Elements) (3rd Ed.), VEB Deutscher Verlag für Grundstoffindustrie, 1983, Leipzig.
  • [13] Tylecote, R. F., History of Metallurgy (3rd Ed.), The Metals Society, 1984, London.
  • [14] Volkert, G., Frank, K. D., Metallurgie der Ferrolegierungen, 2nd edition, Springer-Verlag, 1972, Berlin.
  • [15] Gungor M. N., Benzesik K., Bugdayci M., Yucel O., Production of Molybdenum, Nickel, Chromium Containing Iron Based Alloys Via Metallothermic Process, XIV. INFACON: International Ferro-Alloys Congress, 2015, Kiev, Ukrayna.
  • [16] Turan A., Bugdayci M., Yucel O., Self-propagating High Temperature Synthesis of TiB2, High Temperature Materials and Processes, 2014, 34 (2), 185–193.
  • [17] Bale, C. W., Bélisle E, Chartrand P., Decterov S. A., Eriksson G., Hack K., Jung I.-H., FactSage Thermochemical Software and Databases - Recent Developments, Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33 (2), 295-311.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Levent Öncel 0000-0002-6018-8741

Yayımlanma Tarihi 31 Mayıs 2020
Gönderilme Tarihi 12 Mart 2020
Kabul Tarihi 2 Mayıs 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

IEEE L. Öncel, “Sürekli Döküm Tufalinden Metalotermik Yöntemle Ferronikel Üretimi”, ECJSE, c. 7, sy. 2, ss. 824–834, 2020, doi: 10.31202/ecjse.702804.