Matematik Uygulamaları Öğretim Materyalinin Modelleme Problemlerine Uygunluğu
Year 2024,
, 152 - 165, 30.06.2024
Zeynep Çakmak Gürel
,
Ahmet Işık
Abstract
Bu çalışmanın amacı, ortaokul matematik uygulamaları dersine ait öğretim materyalinde yer alan problemlerin, matematiksel modelleme problemlerine uygun olup olmadığının araştırılmasıdır. Araştırmada nitel araştırma yöntemlerinden doküman analizi yöntemi kullanılmıştır. Matematik uygulamaları öğretim materyali olarak değerlendirilen beşinci, altıncı, yedinci ve sekizinci sınıf ders kitaplarında yer alan toplam 149 adet problem incelenmiştir. Verilerin analizinde tümdengelim ve tümevarım yöntemleri birlikte kullanılarak bu öğretim materyallerinde yer alan problemlerin yarısından fazlasının gerçekçi durum içeren problemler olduğu görülmüştür. Fakat bu problemlerin oldukça az bir kısmı modelleme problemlerinde bulunması gereken özgünlük kriterini sağlamaktadır. Yine benzer şekilde sadece birkaç adet problem açıklık kriterlerini taşımaktadır. Modelleme alt yeterlikleri incelendiğinde problemlerin birçoğunun matematiksel çözüm gerektiren problemler olduğu dikkat çekicidir. Problemlerin büyük çoğunluğu basitleştirme, yorumlama ve doğrulama aşamalarını içermemektedir. Yenilenen matematik uygulamaları öğretim programı ile matematiksel modellemeye ilginin arttığı fakat bunun öğretim materyallerine yansımadığı görülmüştür. Dikkate alınan kriterler doğrultusunda öğretim materyallerinin yenilenmesi önerilmektedir.
References
- Achmetli K., & Schukajlow S. (2019). Multiple solutions, the experience of competenceand ınterest. In M. S. Hannula G. C., Leder F., Morselli M., Vollstedt and Q. Zhang (Eds.), Affect and Mathematics Education (pp. 39-65). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-13761-8_3
- Bilgili, S., & Çiltaş, A., (2022). Prospective Mathematics Teachers’ Creating Processes of Model Eliciting Activities and The Reflections on Their Teaching Experiences. Bayburt Eğitim Fakültesi Dergisi , vol.17, no.34, 559-585.
- Bilgili, S., Öndeş, R. N., & Çiltaş, A., (2020). Matematik öğretmenlerinin kurmuş oldukları matematiksel modelleme etkinliklerinin oluşturma ve çözme süreçlerinin incelenmesi. Sınırsız Eğitim ve Araştırma Dergisi , 5(1), 90-108.
- Blomhøj, M., & Kjeldsen, T. H. (2006). Teaching mathematical modelling through project work. Zentralblatt für Didaktik der Mathematik, 38(2), 163-177. doi: 10.1007/BF02655887.
- Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1) 45-58.
- Blum, W., & Leiss, D. (2007). How do teachers deal with modeling problems? In C. Haines, P. Galbraith, W. Blum & S. Khan (Eds.), Mathematical modeling (ICTMA 12): Education, engineering and economics (pp. 222–231). Chichester: Horwood Publishing.
- Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative research journal, 9(2), 27-40.
- Cirillo, M., Pelesko, J. A., Felton-Koestler, M. D., & Rubel, L. (2016). Perspectives on modeling in school mathematics. In C. R. Hirsch & A. R. McDuffie (Eds.), Mathematical modeling and modeling mathematics (pp. 3–16). Reston, VA: National Council of Teachers of Mathematics.
- Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement. 20, 37-46. https://doi.org/10.1177/001316446002000104.
Corbin, J., & Strauss, A. (2008). Basics of qualitative research: Techniques and procedures for developing grounded theory (3rd edition). Thousand Oaks: Sage Publications, Inc.
- Czocher, J. A. (2018). How does validating activity contribute to the modeling process? Educational Studies in Mathematics, 99, 137–159. doi.10.1007/s10649-018-9833-4
- Dede, A. T., Hidiroglu, Ç. N., & Güzel, E. B. (2017). Examining of model eliciting activities developed by mathematics student teachers. Journal on Mathematics Education, 8(2), 223-242.
- Deniz, D. (2014). Ortaöğretim matematik öğretmenlerinin matematiksel modelleme yöntemine uygun etkinlik oluşturabilme ve uygulayabilme yeterlikleri. Yayımlanmamış Doktora Tezi, Atatürk Üniversitesi Eğitim Bilimleri Enstitüsü, Erzurum.
- Deniz, D., & Akgün, L. (2016). The sufficiency of high school mathematics teachers’ to design activities appropriate to model eliciting activities design principles. Karaelmas Journal of Educational Sciences, 4, 1-14.
- Doerr, H. M., & Tripp, J. S. (1999). Understanding how students develop mathematical models. Mathematical Thinking and Learning, 1(3), 231–254.
- Doruk, B. K. (2019). Beşinci sınıf matematik uygulamaları dersi öğretim materyalinin model oluşturma etkinliği tasarlama prensiplerine uygunluk düzeyinin incelenmesi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 13(2), 879-908.
- Erdem, Z.Ç., Doğan, M. F., Gürbüz, R., & Şahin, S. (2017). Matematiksel modellemenin öğretim araçlarına yansımaları: ders kitabı analizi. Adıyaman Üniversitesi Eğitim Bilimleri Dergisi, 7(1), 61-86.
- Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM-Mathematics Education, 38(2), 143–162. https://doi.org/10.1007/BF02655886
- Greefrath, G., Siller, HS., Klock, H., & Wess, R. (2022) Pre-service secondary teachers’ pedagogical content knowledge for the teaching of mathematical modelling. Educ Stud Math, 109, 383–407. https://doi.org/10.1007/s10649-021-10038-z
- Greefrath, G., Siller, H.-S., & Ludwig, M. (2017). Modelling Problems in German Grammar School Leaving Examinations (Abitur). In T. Dooley & G. Gueudet (Eds.), Proceedings of CERME 10 (pp. 932–939). Dublin, Ireland: DCU Institute of Education & ERME.
- Greefrath, G., & Vorhölter, K. (2016). Teaching and learning mathematical modelling: approaches and developments from German speaking countries. ICME-13 Topical Surveys, 1-42, Switzerland: Springer International Publishing. doi: 10.1007/978-3-319-45004-9_1.
- Gulikers, J. T. M., Bastiaens, T. J., & Martens, R. L. (2005). The surplus of an authentic learning environment. Computers in Human Behavior, 21, 509–521.
- Kaiser, G. (2002). Educational philosophies and their influence on mathematics education – An ethnographic study in English and German mathematics classrooms. ZDM – The International Journal on Mathematics Education, 34(6), 241–257.
- Kaiser, G. (2020). Mathematical modelling and applications in education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 553–561). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-030-15789-0_101.
- Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. Zentralblatt für Didaktik der Mathematik, 38(3), 302-310. doi: 10.1007/BF02652813
- Leiss, D., & Wiegand, B. (2005). A classification of teacher interventions in mathematics teaching. ZDM Mathematics Education, 37(3), 240–245.
- Lesh, R., & Doerr, H. M. (2003). Foundations of a models and modelling perspective on mathematics teaching, learning and problem solving. In R. Lesh and H. M. Doerr (Eds.), Beyond constructivism: models and modelling perspectives on mathematics problem solving, learning and teaching (pp. 3-33). Mahwah N. J.:Lawrance Erlbaum Associates Publishers.
- Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. Kelly and R. Lesh (Eds.), Handbook of research in mathematics and science education (pp. 113–149). Mahwah, NJ: Lawrence Erlbaum and Associates.
- Lingefjärd, T. (2006). Faces of mathematical modelling. Zentralblatt Für Didactik Der Mathematic, 38(2), 96 -112. doi: 10.1007/BF02655884
- Maaß, K. (2006). What are modelling competencies? Zentralblatt Für Didactik Der Mathematic, 38(2), 113-142. doi: 10.1007/BF02655885
- Maaß, K. (2010). Classification scheme for modelling tasks. ZDM Mathematics Education, 31(2), 285–311.
- Mayring, P. (2015). Qualitative content analysis: Theoretical background and procedures. In A. Bikner-Ahsbahs, C. Knipping & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education (pp. 365–380). Dordrecht: Springer.
- Milli Eğitim Bakanlığı [MEB], (2017). Ortaokul matematik dersi 5-8. sınıflar öğretim programı. Ankara: MEB.
- Milli Eğitim Bakanlığı [MEB], (2015a). Ortaokul matematik uygulamaları dersi 5. Sınıf öğretmenler için öğretim materyali. Ankara: MEB.
- Milli Eğitim Bakanlığı [MEB], (2015b). Ortaokul matematik uygulamaları dersi 6. Sınıf öğretmenler için öğretim materyali. Ankara: MEB.
Milli Eğitim Bakanlığı [MEB], (2015c). Ortaokul matematik uygulamaları dersi 7. Sınıf öğretmenler için öğretim materyali. Ankara: MEB.
- Milli Eğitim Bakanlığı [MEB], (2015d). Ortaokul matematik uygulamaları dersi 8. Sınıf öğretmenler için öğretim materyali. Ankara: MEB.
- Milli Eğitim Bakanlığı [MEB], (2018). Ortaokul matematik uygulamaları dersi 5-8. sınıflar öğretim programı. Ankara: MEB.
- Niss, M., Blum, W., & Galbraith, P. (2007). How to replace the word problems. In W. Blum, P. Galbraith, H-W. Henn and M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 3-32). New York: Springer.
- Ostkirchen, F., & Greefrath, G. (2022). Case study on students' mathematical modelling processes considering the achievement level. Modelling in Science Education and Learning, 15(1), 137-150. doi: 10.4995/msel.2022.16506.
- Palm, T. (2007). Features and impact of the authenticity of applied mathematical school tasks. In W. Blum et al. (Eds.), Applications and modelling in mathematics education (ICMI studies series no. 10, pp. 201–208). New York: Springer.
- Sağıroğlu, D. (2018). Matematik öğretmenlerinin matematiksel modelleme yöntemine yönelik etkinlik oluşturma ve uygulama süreçlerinin incelenmesi, Yayımlanmamış Yüksek lisans tezi, Fen Bilimleri Enstitüsü, Bülent Ecevit Üniversitesi, Zonguldak.
- Siller, H. S., & Greefrath, G. (2020). Modelling Tasks in Central Examinations Based on the Example of Austria. In: Stillman, G., Kaiser, G., Lampen, C. (eds) Mathematical Modelling Education and Sense-making. International Perspectives on the Teaching and Learning of Mathematical Modelling. Springer, Cham. https://doi.org/10.1007/978-3-030-37673-4_33
- Schukajlow, S., Kolter, J., & Blum, W. (2015). Scaffolding mathematical modelling with a solution plan. ZDM Mathematics Education, 47(7). doi:10.1007/s11858-015-0707-2
- Stender, S., & Kaiser, G. (2015). Scaffolding in complex modelling situations. ZDM Mathematics Education, 47(7). doi:10.1007/s11858-015-0741-0
- Stender, P., Krosanke, N., & Kaiser, G. (2017). Scaffolding complex modelling processes: An in-depth study. In G. Stillman, W. Blum and G. Kaiser (Eds.), Mathematical modelling and applications: Crossing and researching boundaries in mathematics education (pp. 467–477). Cham: Springer.
- Toma, J. D. (2006). Approaching rigor in applied qualitative research. In C. F. Conrad, & R. C. Serlin (Eds.), The Sage handbook for research in education: Engaging ideas and enriching inquiry (pp. 405-423). Thousand Oaks, CA: Sage Publications, Inc.
- Tropper, N., Leiss, D., & Hanze, M. (2015). Teachers’ temporary support and worked-out examples as elements of scaffolding in mathematical modeling. ZDM Mathematics Education, 47(7). doi:10.1007/s11858-015-0718-z
- Vos, P. (2011). What is ‘authentic’ in the teaching and learning of mathematical modelling? In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 713–722). Dordrecht: Springer.
- Vos, P. (2013). Assessment of modelling in mathematics examination papers: Ready-made models and reproductive mathematising. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 479–488). Dordrecht: Springer.
- Wess, R., & Greefrath, G. (2019). Professional competencies for teaching mathematical modelling—Supporting the modelling-specific task competency of prospective teachers in the teaching laboratory. In U. T. Jankvist, M. Van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), European Research in Mathematics: Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (pp. 1274–1283). Utrecht, Netherlands.
- Wess, R., Klock, H., Siller, H.-S., & Greefrath, G. (2021). Measuring Professional Competence for the Teaching of Mathematical Modelling: A Test Instrument. Springer International Publishing. https://doi.org/10.1007/978-3-030-78071-5
- Yıldırım, A., & Şimşek, H. (2013). Sosyal bilimlerde nitel araştırma yöntemleri (9. baskı). Ankara: Seçkin Yayıncılık.
Year 2024,
, 152 - 165, 30.06.2024
Zeynep Çakmak Gürel
,
Ahmet Işık
References
- Achmetli K., & Schukajlow S. (2019). Multiple solutions, the experience of competenceand ınterest. In M. S. Hannula G. C., Leder F., Morselli M., Vollstedt and Q. Zhang (Eds.), Affect and Mathematics Education (pp. 39-65). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-13761-8_3
- Bilgili, S., & Çiltaş, A., (2022). Prospective Mathematics Teachers’ Creating Processes of Model Eliciting Activities and The Reflections on Their Teaching Experiences. Bayburt Eğitim Fakültesi Dergisi , vol.17, no.34, 559-585.
- Bilgili, S., Öndeş, R. N., & Çiltaş, A., (2020). Matematik öğretmenlerinin kurmuş oldukları matematiksel modelleme etkinliklerinin oluşturma ve çözme süreçlerinin incelenmesi. Sınırsız Eğitim ve Araştırma Dergisi , 5(1), 90-108.
- Blomhøj, M., & Kjeldsen, T. H. (2006). Teaching mathematical modelling through project work. Zentralblatt für Didaktik der Mathematik, 38(2), 163-177. doi: 10.1007/BF02655887.
- Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1) 45-58.
- Blum, W., & Leiss, D. (2007). How do teachers deal with modeling problems? In C. Haines, P. Galbraith, W. Blum & S. Khan (Eds.), Mathematical modeling (ICTMA 12): Education, engineering and economics (pp. 222–231). Chichester: Horwood Publishing.
- Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative research journal, 9(2), 27-40.
- Cirillo, M., Pelesko, J. A., Felton-Koestler, M. D., & Rubel, L. (2016). Perspectives on modeling in school mathematics. In C. R. Hirsch & A. R. McDuffie (Eds.), Mathematical modeling and modeling mathematics (pp. 3–16). Reston, VA: National Council of Teachers of Mathematics.
- Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement. 20, 37-46. https://doi.org/10.1177/001316446002000104.
Corbin, J., & Strauss, A. (2008). Basics of qualitative research: Techniques and procedures for developing grounded theory (3rd edition). Thousand Oaks: Sage Publications, Inc.
- Czocher, J. A. (2018). How does validating activity contribute to the modeling process? Educational Studies in Mathematics, 99, 137–159. doi.10.1007/s10649-018-9833-4
- Dede, A. T., Hidiroglu, Ç. N., & Güzel, E. B. (2017). Examining of model eliciting activities developed by mathematics student teachers. Journal on Mathematics Education, 8(2), 223-242.
- Deniz, D. (2014). Ortaöğretim matematik öğretmenlerinin matematiksel modelleme yöntemine uygun etkinlik oluşturabilme ve uygulayabilme yeterlikleri. Yayımlanmamış Doktora Tezi, Atatürk Üniversitesi Eğitim Bilimleri Enstitüsü, Erzurum.
- Deniz, D., & Akgün, L. (2016). The sufficiency of high school mathematics teachers’ to design activities appropriate to model eliciting activities design principles. Karaelmas Journal of Educational Sciences, 4, 1-14.
- Doerr, H. M., & Tripp, J. S. (1999). Understanding how students develop mathematical models. Mathematical Thinking and Learning, 1(3), 231–254.
- Doruk, B. K. (2019). Beşinci sınıf matematik uygulamaları dersi öğretim materyalinin model oluşturma etkinliği tasarlama prensiplerine uygunluk düzeyinin incelenmesi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 13(2), 879-908.
- Erdem, Z.Ç., Doğan, M. F., Gürbüz, R., & Şahin, S. (2017). Matematiksel modellemenin öğretim araçlarına yansımaları: ders kitabı analizi. Adıyaman Üniversitesi Eğitim Bilimleri Dergisi, 7(1), 61-86.
- Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM-Mathematics Education, 38(2), 143–162. https://doi.org/10.1007/BF02655886
- Greefrath, G., Siller, HS., Klock, H., & Wess, R. (2022) Pre-service secondary teachers’ pedagogical content knowledge for the teaching of mathematical modelling. Educ Stud Math, 109, 383–407. https://doi.org/10.1007/s10649-021-10038-z
- Greefrath, G., Siller, H.-S., & Ludwig, M. (2017). Modelling Problems in German Grammar School Leaving Examinations (Abitur). In T. Dooley & G. Gueudet (Eds.), Proceedings of CERME 10 (pp. 932–939). Dublin, Ireland: DCU Institute of Education & ERME.
- Greefrath, G., & Vorhölter, K. (2016). Teaching and learning mathematical modelling: approaches and developments from German speaking countries. ICME-13 Topical Surveys, 1-42, Switzerland: Springer International Publishing. doi: 10.1007/978-3-319-45004-9_1.
- Gulikers, J. T. M., Bastiaens, T. J., & Martens, R. L. (2005). The surplus of an authentic learning environment. Computers in Human Behavior, 21, 509–521.
- Kaiser, G. (2002). Educational philosophies and their influence on mathematics education – An ethnographic study in English and German mathematics classrooms. ZDM – The International Journal on Mathematics Education, 34(6), 241–257.
- Kaiser, G. (2020). Mathematical modelling and applications in education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 553–561). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-030-15789-0_101.
- Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. Zentralblatt für Didaktik der Mathematik, 38(3), 302-310. doi: 10.1007/BF02652813
- Leiss, D., & Wiegand, B. (2005). A classification of teacher interventions in mathematics teaching. ZDM Mathematics Education, 37(3), 240–245.
- Lesh, R., & Doerr, H. M. (2003). Foundations of a models and modelling perspective on mathematics teaching, learning and problem solving. In R. Lesh and H. M. Doerr (Eds.), Beyond constructivism: models and modelling perspectives on mathematics problem solving, learning and teaching (pp. 3-33). Mahwah N. J.:Lawrance Erlbaum Associates Publishers.
- Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. Kelly and R. Lesh (Eds.), Handbook of research in mathematics and science education (pp. 113–149). Mahwah, NJ: Lawrence Erlbaum and Associates.
- Lingefjärd, T. (2006). Faces of mathematical modelling. Zentralblatt Für Didactik Der Mathematic, 38(2), 96 -112. doi: 10.1007/BF02655884
- Maaß, K. (2006). What are modelling competencies? Zentralblatt Für Didactik Der Mathematic, 38(2), 113-142. doi: 10.1007/BF02655885
- Maaß, K. (2010). Classification scheme for modelling tasks. ZDM Mathematics Education, 31(2), 285–311.
- Mayring, P. (2015). Qualitative content analysis: Theoretical background and procedures. In A. Bikner-Ahsbahs, C. Knipping & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education (pp. 365–380). Dordrecht: Springer.
- Milli Eğitim Bakanlığı [MEB], (2017). Ortaokul matematik dersi 5-8. sınıflar öğretim programı. Ankara: MEB.
- Milli Eğitim Bakanlığı [MEB], (2015a). Ortaokul matematik uygulamaları dersi 5. Sınıf öğretmenler için öğretim materyali. Ankara: MEB.
- Milli Eğitim Bakanlığı [MEB], (2015b). Ortaokul matematik uygulamaları dersi 6. Sınıf öğretmenler için öğretim materyali. Ankara: MEB.
Milli Eğitim Bakanlığı [MEB], (2015c). Ortaokul matematik uygulamaları dersi 7. Sınıf öğretmenler için öğretim materyali. Ankara: MEB.
- Milli Eğitim Bakanlığı [MEB], (2015d). Ortaokul matematik uygulamaları dersi 8. Sınıf öğretmenler için öğretim materyali. Ankara: MEB.
- Milli Eğitim Bakanlığı [MEB], (2018). Ortaokul matematik uygulamaları dersi 5-8. sınıflar öğretim programı. Ankara: MEB.
- Niss, M., Blum, W., & Galbraith, P. (2007). How to replace the word problems. In W. Blum, P. Galbraith, H-W. Henn and M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 3-32). New York: Springer.
- Ostkirchen, F., & Greefrath, G. (2022). Case study on students' mathematical modelling processes considering the achievement level. Modelling in Science Education and Learning, 15(1), 137-150. doi: 10.4995/msel.2022.16506.
- Palm, T. (2007). Features and impact of the authenticity of applied mathematical school tasks. In W. Blum et al. (Eds.), Applications and modelling in mathematics education (ICMI studies series no. 10, pp. 201–208). New York: Springer.
- Sağıroğlu, D. (2018). Matematik öğretmenlerinin matematiksel modelleme yöntemine yönelik etkinlik oluşturma ve uygulama süreçlerinin incelenmesi, Yayımlanmamış Yüksek lisans tezi, Fen Bilimleri Enstitüsü, Bülent Ecevit Üniversitesi, Zonguldak.
- Siller, H. S., & Greefrath, G. (2020). Modelling Tasks in Central Examinations Based on the Example of Austria. In: Stillman, G., Kaiser, G., Lampen, C. (eds) Mathematical Modelling Education and Sense-making. International Perspectives on the Teaching and Learning of Mathematical Modelling. Springer, Cham. https://doi.org/10.1007/978-3-030-37673-4_33
- Schukajlow, S., Kolter, J., & Blum, W. (2015). Scaffolding mathematical modelling with a solution plan. ZDM Mathematics Education, 47(7). doi:10.1007/s11858-015-0707-2
- Stender, S., & Kaiser, G. (2015). Scaffolding in complex modelling situations. ZDM Mathematics Education, 47(7). doi:10.1007/s11858-015-0741-0
- Stender, P., Krosanke, N., & Kaiser, G. (2017). Scaffolding complex modelling processes: An in-depth study. In G. Stillman, W. Blum and G. Kaiser (Eds.), Mathematical modelling and applications: Crossing and researching boundaries in mathematics education (pp. 467–477). Cham: Springer.
- Toma, J. D. (2006). Approaching rigor in applied qualitative research. In C. F. Conrad, & R. C. Serlin (Eds.), The Sage handbook for research in education: Engaging ideas and enriching inquiry (pp. 405-423). Thousand Oaks, CA: Sage Publications, Inc.
- Tropper, N., Leiss, D., & Hanze, M. (2015). Teachers’ temporary support and worked-out examples as elements of scaffolding in mathematical modeling. ZDM Mathematics Education, 47(7). doi:10.1007/s11858-015-0718-z
- Vos, P. (2011). What is ‘authentic’ in the teaching and learning of mathematical modelling? In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 713–722). Dordrecht: Springer.
- Vos, P. (2013). Assessment of modelling in mathematics examination papers: Ready-made models and reproductive mathematising. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 479–488). Dordrecht: Springer.
- Wess, R., & Greefrath, G. (2019). Professional competencies for teaching mathematical modelling—Supporting the modelling-specific task competency of prospective teachers in the teaching laboratory. In U. T. Jankvist, M. Van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), European Research in Mathematics: Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (pp. 1274–1283). Utrecht, Netherlands.
- Wess, R., Klock, H., Siller, H.-S., & Greefrath, G. (2021). Measuring Professional Competence for the Teaching of Mathematical Modelling: A Test Instrument. Springer International Publishing. https://doi.org/10.1007/978-3-030-78071-5
- Yıldırım, A., & Şimşek, H. (2013). Sosyal bilimlerde nitel araştırma yöntemleri (9. baskı). Ankara: Seçkin Yayıncılık.