Research Article
BibTex RIS Cite

Sex determination of proximal and distal end of femur on radiological images

Year 2024, Volume: 14 Issue: 1, 15 - 33, 30.06.2024

Abstract

The femur is one of the most commonly recovered bones in mass casualty disasters and is often used for identification, both for height and gender. However, in most cases the femur cannot be obtained as a whole. Therefore, this study evaluated and compared the reliability of gender estimates based on measurements taken from the proximal and distal ends of the femur.The study was conducted by evaluating the measurements of 226 femurs on radiological images obtained from a total of 128 individuals (67 males and 61 females). All the radiological images were obtained from the archive of the Radiology Department of Başkent University Faculty of Medicine, Adana Application Research Center. Eleven of the anthropometric measurements were linear and two were angular.When the anthropometric measurements obtained from the whole sample were evaluated in terms of differences between the right and left sides, significant differences were observed between the sides in terms of intercondylar angle, intertrochanteric distance (bc), inclination angle (inc), and collum femoris width (b - b). On the other hand, as a result of statistical analyses performed to predict gender, significant differences were found between both sexes in all measurements except intercondylar angle and inclination angle. Logistic regression analysis was performed and a formula was developed to determine sex with the data obtained. ROC analysis was performed to determine a threshold for the discriminability of the measurements taken from the distal and proximal ends of the femur for gender prediction, and the variable that gave the best results was determined to be the inter-epicondylar distance.

Ethical Statement

Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir değişiklik yapmadığımı, çalışmanın Committee on Publication Ethics (COPE)' in tüm şartlarını ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim. Herhangi bir zamanda, çalışmayla ilgili yaptığım bu beyana aykırı bir durumun saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçlara razı olduğumu bildiririm.

Supporting Institution

Bu çalışma Başkent Üniversitesi Tıp ve Sağlık Bilimleri Araştırma Kurulu tarafından onaylanmış (Proje no:KA21/43) ve Başkent Üniversitesi Araştırma Fonunca desteklenmiştir.

Project Number

KA21/43

References

  • Albanese J, Eklics G, Tuck A. (2008) A metric method for sex determination using the proximal femur and fragmentary hipbone. Journal of Forensic Sciences, 53(6), 1283-1288.
  • Albanese J. (2013) A method for estimating sex using the clavicle, humerus, radius, and ulna. Journal of Forensic Sciences 58(6):1413-1419.
  • Alunni-Perret V, Staccini P, Quatrehomme G. (2008) Sex determination from the distal part of the femur in a French contemporary population. Forensic Science İnternational 175(2-3):113-117.
  • Attia MH, Attia MH, Farghaly YT, Abulnoor BAES, Curate F. (2022) Performance of the supervised learning algorithms in sex estimation of the proximal femur: A comparative study in contemporary Egyptian and Turkish samples. Science & Justice 62(3):288-309.
  • Attia MH, Attia MH, Farghaly YT, Abulnoor BAES, Manolis SK, Purkait R, Ubelaker, D. H. (2022). Purkait’s triangle revisited: role in sex and ancestry estimation. Forensic Sciences Research 7(3):440-455.
  • Beach FA. (1981) Historical origins of modern research on hormones and behavior. Hormones and Behavior 15(4):325-376.
  • Bellemans J, Carpentier K, Vandenneucker H, Vanlauwe J, Victor J. (2010) The John Insall Award: both morphotype and gender influence the shape of the knee in patients undergoing TKA. Clinical Orthopaedics and Related Research 468(1):29-36.
  • Bidmos MA, Mazengenya P. (2021) Accuracies of discriminant function equations for sex estimation using long bones of upper extremities. International Journal of Legal Medicine 135:1095-1102.
  • Biehler-Gomez L, Mattia M, Mondellini M, Palazzolo L, Cattaneo C. (2022) Differential skeletal preservation between sexes: a diachronic study in Milan over 2000 years. Archaeological and Anthropological Sciences 14(8):147.
  • Boddington A, Garland AN, Janaway RC. (Eds.). (1987) Death, decay, and reconstruction: approaches to archaeology and forensic science. Manchester University Press.
  • Black III TK. (1978). A new method for assessing the sex of fragmentary skeletal remains: femoral shaft circumference. American Journal of Physical Anthropology 48(2):227-231.
  • Bramble DM., Lieberman DE. (2004) Endurance running and the evolution of homo. Nature 432(7015):345-352.
  • Brooks M, Warlde EN. (1962) Muscle action and the shape of the femur. Jour Bone and Joint Surgery 44B:398-411.
  • Burns KR. (1987) The effects of drying and burning on human bones and teeth. University of Florida. Burns KR. (2015) Forensic anthropology training manual. Routledge.
  • Cavaignac E, Savall F, Faruch M, Reina N, Chiron P, Telmon N. (2016) Geometric morphometric analysis reveals sexual dimorphism in the distal femur. Forensic Science International 259:246-e1
  • Chatterjee PM, Krishan K, Singh RK, Kanchan T. (2020) Sex estimation from the femur using discriminant function analysis in a Central Indian population. Medicine, Science and the Law, 60(2):112-121.
  • Cunningham C, Scheuer L, Black S. (2016) Developmental juvenile osteology. Academic press.
  • Curate F, Coelho J, Gonçalves D, Coelho C, Ferreira MT, Navega D, Cunha E. (2016) A method for sex estimation using the proximal femur. Forensic Science International 266:579-e1.
  • Curate F, Albuquerque A, Ferreira I, Cunha E. (2017) Sex estimation with the total area of the proximal femur: a densitometric approach. Forensic Science International 275:110-116.
  • Curate F, Umbelino C, Perinha A, Nogueira C, Silva AM, Cunha E. (2017) Sex determination from the femur in Portuguese populations with classical and machine-learning classifiers. Journal of Forensic and Legal Medicine 52:75-81.
  • Choi SC, Trotter M. (1970) A statistical study of the multivariate structure and racesex differences of American White and Negro foetal skeletons. Am J Phys Anthrop 33:307-312.
  • Clavero A, Salicrú M, Turbón D. (2015) Sex prediction from the femur and hip bone using a sample of CT images from a Spanish population. International Journal of Legal Medicine 129:373-383.
  • Colman KL, Dobbe JG, Stull KE, Ruijter JM, Oostra RJ, Van Rijn RR, Streekstra GJ. (2017) The geometrical precision of virtual bone models derived from clinical computed tomography data for forensic anthropology. International Journal of Legal Medicine 131:1155-1163.
  • Connallon T, Knowles LL. (2005) Intergenomic conflict revealed by patterns of sex-biased gene expression. Trends Genet 21:495–499.
  • Cowal LS, Pastor RF. (2008) Dimensional variation in the proximal ulna: evaluation of a metric method for sex assessment. American Journal of Physical Anthropology 135(4):469-478.
  • de Froidmont S, Grabherr S, Vaucher P, De Cesare M, Egger C, Papageorgopoulou C, Uldin T. (2013) Virtual anthropology: a comparison between the performance of conventional X-ray and MDCT in investigating the trabecular structure of long bones. Forensic Science International 225(1-3):53-59.
  • Delannoy Y, Colard T, Le Garff E, Mesli V, Aubernon C, Penel G, Gosset D. (2016) Effects of the environment on bone mass: A human taphonomic study. Legal Medicine 20:61-67.
  • Dent BB, Forbes SL, Stuart BH. (2004) Review of human decomposition processes in soil. Environmental Geology 45:576-585.
  • DiBennardo R, Taylor JV. (1979) Sex assessment of the femur: a test of a new method. American Journal of Physical Anthropology 50(4):635-637.
  • Dibennardo R, Taylor JV. (1982) Classification and misclassification in sexing the black femur by discriminant function analysis. American Journal of Physical Anthropology 58(2):145-151.
  • Ellegren H, Parsch J. (2007) The evolution of sex-biased genes and sex-biased gene expression. Nature Reviews Genetics 8(9):689-698.
  • Forbes SL. (2008) Decomposition chemistry in a burial environment. In Soil analysis in forensic taphonomy. CRC Press.
  • Frayer DW, Wolpoff MH. (1985) Sexual dimorphism. Annual Review of Anthropology 14(1):429-473.. Giorgi B. (1956) 18 Morphologic Variations of the Intercondylar Eminence of the Knee. Clinical Orthopaedics and Related Research 8:209-217.
  • Goffer Z. (2006) Archaeological chemistry. John Wiley Sons.
  • Gulhan O, Harrison K, Kiris A. (2015) A new computer-tomography-based method of sex estimation: development of Turkish population-specific standards. Forensic Science International 255:2-8.
  • Glucksmann A. (1981) Sexual dimorphism in human and mammalian biology and pathology. No Title. Hare PE. (1988) 12. Organic geochemistry of bone and its relation to the survival of bone in the natural environment. Fossils in the making: vertebrate taphonomy and paleoecology (69):208.
  • Ingalls WN. (1924) Studies on the femur: general characteristics of the femur in the male White. Am J Phys Anthrop 7:207–255.
  • Iscan MY. (1984) Detetrminaion of sex from rhe femur in blacks and whites. Coll Antropol 8:169-177.
  • Iscan MY, Loth SR, King CA, Shihai D, Yoshino M. (1998) Sexual dimorphism in the humerus: a comparative analysis of Chinese, Japanese and Thais. Forensic Science International 98(1-2):17-29.
  • Iscan MY. (2001) Global forensic anthropology in the 21st century. Forensic Science International 117(1-2):1-6.
  • Janaway RC, Percival SL, Wilson A.S. (2009) Decomposition of human remains. In: Percival SL, editör. Microbiology and aging: clinical manifestations. Springer, 313-334.
  • Jongmuenwai W, Boonpim,M, Monum T, Sintubua A, Prasitwattanaseree S, Mahakkanukrauh P. (2021) Sex estimation using radius in a Thai population. Anatomy Cell Biology 54(3):321.
  • Kalaiyarasan A, Sankar K, Sundaram S. (2020) Finite element analysis and modeling of fractured femur bone. Materials Today: Proceedings 22:649-653.
  • Kanchan RK, Subhadarsini S, Mishra DN, Mohapatra C. (2021) Sexual dimorphism of femoral head--an observational study in the population of odisha. Journal of Evolution of Medical and Dental Sciences 10(33):2765-2769.
  • Kanz F, Fitzl C, Vlcek A, Frommlet F. (2015) Sex estimation using the femur of Austrians born in the 19 th to the middle of the 20 th century. Anthropologischer Anzeiger 72(1):1-11.
  • Khaleel N, Shaik HS. (2014) Osteometric study of human femur. Int J Res Med Sci 2(1):104-107.
  • Klales AR. (2013) Current practices in physical anthropology for sex estimation in unidentified, adult individuals. Am J Phys Anthropol 150(S56):168.
  • Kim DI, Kwak DS, Han SH. (2013) Sex determination using discriminant analysis of the medial and lateral condyles of the femur in Koreans. Forensic Science International 233(1-3):121-125.
  • King CA, İşcan MY, Loth SR. (1998) Metric and comparative analysis of sexual dimorphism in the Thai femur. Journal of Forensic Sciences 43(5):954-958.
  • Knecht S, Santos F, Ardagna Y, Alunni V, Adalian P, Nogueira L. (2023) Sex estimation from long bones: a machine learning approach. International Journal of Legal Medicine 137(6):1887-1895.
  • Krishan K, Chatterjee PM, Kanchan T, Kaur S, Baryah N, Singh RK. (2016) A review of sex estimation techniques during examination of skeletal remains in forensic anthropology casework. Forensic Science International 261:165-e1.
  • Krogman WM., Iscan MY. (1986) The human skeleton in forensic medicine, Charles C. Thomas, Springfield, IL, 15(2):202-08.
  • Lavelle CLB. (1974) An analysis of human femur. Am J Anat 141:415-426.
  • Lombardo S, Sethi PM, Starkey C. (2005) Intercondylar notch stenosis is not a risk factor for anterior cruciate ligament tears in professional male basketball players: an 11-year prospective study. The American Journal of Sports Medicine 33(1):29-34.
  • Lovejoy CO. (2005) The natural history of human gait and posture: Part 1. Spine and pelvis. Gait Posture 21(1):95-112.
  • Monum T, Prasitwattanseree S, Das S, Siriphimolwat P, Mahakkanukrauh P. (2017) Sex estimation by femur in modern Thai population. Clin Ter 168(3):e203-e207.
  • Nogueira L, Santos F, Castier F, Knecht S, Bernardi C, Alunni V. (2023) Sex assessment using the radius bone in a French sample when applying various statistical models. International Journal of Legal Medicine 137(3):925-934.
  • Olivier G. (1969) Practical Anthropology. Springfield, Illinois, USA: Charles C. Thomas Pub Ltd.
  • Osorio H, Schorwer K, Coronado C, Delgado J, Aravena P. (2012). Anatomía del epífisis proximal del fémur en la población chilena: aspectos traumatológicos forenses. International Journal of Morphology 30(1):258-262.
  • Ousley SD, Jantz RL. (1998) The forensic data bank: documenting skeletal trends in the United States. Forensic osteology: advances in the identification of human remains 2:441-458.
  • Parsons FG. (1914) The characters of the English thigh-bone. Journal of Anatomy and Physiology 48(3):238.
  • Pearson K, Bell J. (1919) A study of the long bones of the English skeleton. Part I. The Femur. Drapers’ Co. Research Memoirs, Biometric Series X, London.
  • Pujari RM. (2013) Evaluation of neck shaft angle of femur on dry bones (Doctoral dissertation, Rajiv Gandhi University of Health Sciences (India)).
  • Purkait R. (2001) Measurements of ulna a new method for determination of sex. Journal of Forensic Sciences 46(4):924-927.
  • Purkait R. (2003) Sex determination from femoral head measurements: a new approach. Legal medicine 5:S347-S350.
  • Purkait R, Chandra H. (2004) A study of sexual variation in Indian femur. Forensic Science International 146(1):25-33.
  • Ramezani M, Shokri V, Ghanbari A, Salehi Z, Niknami KA. (2019). Stature estimation in Iranian population from x-ray measurements of femur and tibia bones. Journal of Forensic Radiology and Imaging 19:100343.
  • Reikeras O, Høiseth A, Regstad A, Fönstelien E. (1982) Femoral neck angles: a specimen study with special regard to bilateral differences. Acta Orthopaedica Scandinavica 53(5):775-779.
  • Robinson MS, Bidmos MA. (2011) An assessment of the accuracy of discriminant function equations for sex determination of the femur and tibia from a South African population. Forensic Science International 206(1-3):212-e1.
  • Shelbourne KD, Gray T, Benner RW. (2007) Intercondylar notch width measurement differences between African American and white men and women with intact anterior cruciate ligament knees. The American Journal of Sports Medicine 35(8):1304-1307.
  • Slaus M, Strinović D, Škavić J, Petrovečki V. (2003) Discriminant function sexing of fragmentary and complete femora: standards for contemporary Croatia. Journal of Forensic Sciences 48(3):JFS2002159.
  • Spradley MK, Jant, RL. (2011) Sex estimation in forensic anthropology: skull versus postcranial elements. Journal of Forensic Sciences 56(2):289-296.
  • Srivastava R, Saini V, Rai RK, Pandey S, Singh TB, Tripathi SK, Pandey AK. (2013) Sexual dimorphism in ulna: an osteometric study from India. Journal of Forensic Sciences 58(5):1251-1256.
  • Steyn M, Iscan MY. (1997) Sex determination from the femur and tibia in South African whites. Forensic Science International 90(1-2):111-119.
  • Stewart KM. (1947) Mohave warfare. Southwestern Journal of Anthropology 3(3):257-278.
  • Stewart TD. (1962) Anterior femoral curvature: its utility for race identification. Human Biology 34(1):49-62.
  • Tallman SD, Blanton AI. (2020) Distal humerus morphological variation and sex estimation in modern Thai individuals. Journal of Forensic Sciences 65(2):361-371.
  • Trancho GJ, Robledo B, Lopez-Bueis I, Sánchez JA. (1997. Sexual determination of the femur using discriminant functions. Analysis of a Spanish population of known sex and age. Journal of Forensic Sciences 42(2):181-185.
  • Upadhyay PW, Mishra A. (2021) Forensic Anthropology. In Biological Anthropology-Applications and Case Studies. IntechOpen.
  • Van Gerven DP. (1972) The contribution of size and shape variation to patterns of sexual dimorphism of the human femur. American Journal of Physical Anthropology 37(1):49-60.
Year 2024, Volume: 14 Issue: 1, 15 - 33, 30.06.2024

Abstract

Project Number

KA21/43

References

  • Albanese J, Eklics G, Tuck A. (2008) A metric method for sex determination using the proximal femur and fragmentary hipbone. Journal of Forensic Sciences, 53(6), 1283-1288.
  • Albanese J. (2013) A method for estimating sex using the clavicle, humerus, radius, and ulna. Journal of Forensic Sciences 58(6):1413-1419.
  • Alunni-Perret V, Staccini P, Quatrehomme G. (2008) Sex determination from the distal part of the femur in a French contemporary population. Forensic Science İnternational 175(2-3):113-117.
  • Attia MH, Attia MH, Farghaly YT, Abulnoor BAES, Curate F. (2022) Performance of the supervised learning algorithms in sex estimation of the proximal femur: A comparative study in contemporary Egyptian and Turkish samples. Science & Justice 62(3):288-309.
  • Attia MH, Attia MH, Farghaly YT, Abulnoor BAES, Manolis SK, Purkait R, Ubelaker, D. H. (2022). Purkait’s triangle revisited: role in sex and ancestry estimation. Forensic Sciences Research 7(3):440-455.
  • Beach FA. (1981) Historical origins of modern research on hormones and behavior. Hormones and Behavior 15(4):325-376.
  • Bellemans J, Carpentier K, Vandenneucker H, Vanlauwe J, Victor J. (2010) The John Insall Award: both morphotype and gender influence the shape of the knee in patients undergoing TKA. Clinical Orthopaedics and Related Research 468(1):29-36.
  • Bidmos MA, Mazengenya P. (2021) Accuracies of discriminant function equations for sex estimation using long bones of upper extremities. International Journal of Legal Medicine 135:1095-1102.
  • Biehler-Gomez L, Mattia M, Mondellini M, Palazzolo L, Cattaneo C. (2022) Differential skeletal preservation between sexes: a diachronic study in Milan over 2000 years. Archaeological and Anthropological Sciences 14(8):147.
  • Boddington A, Garland AN, Janaway RC. (Eds.). (1987) Death, decay, and reconstruction: approaches to archaeology and forensic science. Manchester University Press.
  • Black III TK. (1978). A new method for assessing the sex of fragmentary skeletal remains: femoral shaft circumference. American Journal of Physical Anthropology 48(2):227-231.
  • Bramble DM., Lieberman DE. (2004) Endurance running and the evolution of homo. Nature 432(7015):345-352.
  • Brooks M, Warlde EN. (1962) Muscle action and the shape of the femur. Jour Bone and Joint Surgery 44B:398-411.
  • Burns KR. (1987) The effects of drying and burning on human bones and teeth. University of Florida. Burns KR. (2015) Forensic anthropology training manual. Routledge.
  • Cavaignac E, Savall F, Faruch M, Reina N, Chiron P, Telmon N. (2016) Geometric morphometric analysis reveals sexual dimorphism in the distal femur. Forensic Science International 259:246-e1
  • Chatterjee PM, Krishan K, Singh RK, Kanchan T. (2020) Sex estimation from the femur using discriminant function analysis in a Central Indian population. Medicine, Science and the Law, 60(2):112-121.
  • Cunningham C, Scheuer L, Black S. (2016) Developmental juvenile osteology. Academic press.
  • Curate F, Coelho J, Gonçalves D, Coelho C, Ferreira MT, Navega D, Cunha E. (2016) A method for sex estimation using the proximal femur. Forensic Science International 266:579-e1.
  • Curate F, Albuquerque A, Ferreira I, Cunha E. (2017) Sex estimation with the total area of the proximal femur: a densitometric approach. Forensic Science International 275:110-116.
  • Curate F, Umbelino C, Perinha A, Nogueira C, Silva AM, Cunha E. (2017) Sex determination from the femur in Portuguese populations with classical and machine-learning classifiers. Journal of Forensic and Legal Medicine 52:75-81.
  • Choi SC, Trotter M. (1970) A statistical study of the multivariate structure and racesex differences of American White and Negro foetal skeletons. Am J Phys Anthrop 33:307-312.
  • Clavero A, Salicrú M, Turbón D. (2015) Sex prediction from the femur and hip bone using a sample of CT images from a Spanish population. International Journal of Legal Medicine 129:373-383.
  • Colman KL, Dobbe JG, Stull KE, Ruijter JM, Oostra RJ, Van Rijn RR, Streekstra GJ. (2017) The geometrical precision of virtual bone models derived from clinical computed tomography data for forensic anthropology. International Journal of Legal Medicine 131:1155-1163.
  • Connallon T, Knowles LL. (2005) Intergenomic conflict revealed by patterns of sex-biased gene expression. Trends Genet 21:495–499.
  • Cowal LS, Pastor RF. (2008) Dimensional variation in the proximal ulna: evaluation of a metric method for sex assessment. American Journal of Physical Anthropology 135(4):469-478.
  • de Froidmont S, Grabherr S, Vaucher P, De Cesare M, Egger C, Papageorgopoulou C, Uldin T. (2013) Virtual anthropology: a comparison between the performance of conventional X-ray and MDCT in investigating the trabecular structure of long bones. Forensic Science International 225(1-3):53-59.
  • Delannoy Y, Colard T, Le Garff E, Mesli V, Aubernon C, Penel G, Gosset D. (2016) Effects of the environment on bone mass: A human taphonomic study. Legal Medicine 20:61-67.
  • Dent BB, Forbes SL, Stuart BH. (2004) Review of human decomposition processes in soil. Environmental Geology 45:576-585.
  • DiBennardo R, Taylor JV. (1979) Sex assessment of the femur: a test of a new method. American Journal of Physical Anthropology 50(4):635-637.
  • Dibennardo R, Taylor JV. (1982) Classification and misclassification in sexing the black femur by discriminant function analysis. American Journal of Physical Anthropology 58(2):145-151.
  • Ellegren H, Parsch J. (2007) The evolution of sex-biased genes and sex-biased gene expression. Nature Reviews Genetics 8(9):689-698.
  • Forbes SL. (2008) Decomposition chemistry in a burial environment. In Soil analysis in forensic taphonomy. CRC Press.
  • Frayer DW, Wolpoff MH. (1985) Sexual dimorphism. Annual Review of Anthropology 14(1):429-473.. Giorgi B. (1956) 18 Morphologic Variations of the Intercondylar Eminence of the Knee. Clinical Orthopaedics and Related Research 8:209-217.
  • Goffer Z. (2006) Archaeological chemistry. John Wiley Sons.
  • Gulhan O, Harrison K, Kiris A. (2015) A new computer-tomography-based method of sex estimation: development of Turkish population-specific standards. Forensic Science International 255:2-8.
  • Glucksmann A. (1981) Sexual dimorphism in human and mammalian biology and pathology. No Title. Hare PE. (1988) 12. Organic geochemistry of bone and its relation to the survival of bone in the natural environment. Fossils in the making: vertebrate taphonomy and paleoecology (69):208.
  • Ingalls WN. (1924) Studies on the femur: general characteristics of the femur in the male White. Am J Phys Anthrop 7:207–255.
  • Iscan MY. (1984) Detetrminaion of sex from rhe femur in blacks and whites. Coll Antropol 8:169-177.
  • Iscan MY, Loth SR, King CA, Shihai D, Yoshino M. (1998) Sexual dimorphism in the humerus: a comparative analysis of Chinese, Japanese and Thais. Forensic Science International 98(1-2):17-29.
  • Iscan MY. (2001) Global forensic anthropology in the 21st century. Forensic Science International 117(1-2):1-6.
  • Janaway RC, Percival SL, Wilson A.S. (2009) Decomposition of human remains. In: Percival SL, editör. Microbiology and aging: clinical manifestations. Springer, 313-334.
  • Jongmuenwai W, Boonpim,M, Monum T, Sintubua A, Prasitwattanaseree S, Mahakkanukrauh P. (2021) Sex estimation using radius in a Thai population. Anatomy Cell Biology 54(3):321.
  • Kalaiyarasan A, Sankar K, Sundaram S. (2020) Finite element analysis and modeling of fractured femur bone. Materials Today: Proceedings 22:649-653.
  • Kanchan RK, Subhadarsini S, Mishra DN, Mohapatra C. (2021) Sexual dimorphism of femoral head--an observational study in the population of odisha. Journal of Evolution of Medical and Dental Sciences 10(33):2765-2769.
  • Kanz F, Fitzl C, Vlcek A, Frommlet F. (2015) Sex estimation using the femur of Austrians born in the 19 th to the middle of the 20 th century. Anthropologischer Anzeiger 72(1):1-11.
  • Khaleel N, Shaik HS. (2014) Osteometric study of human femur. Int J Res Med Sci 2(1):104-107.
  • Klales AR. (2013) Current practices in physical anthropology for sex estimation in unidentified, adult individuals. Am J Phys Anthropol 150(S56):168.
  • Kim DI, Kwak DS, Han SH. (2013) Sex determination using discriminant analysis of the medial and lateral condyles of the femur in Koreans. Forensic Science International 233(1-3):121-125.
  • King CA, İşcan MY, Loth SR. (1998) Metric and comparative analysis of sexual dimorphism in the Thai femur. Journal of Forensic Sciences 43(5):954-958.
  • Knecht S, Santos F, Ardagna Y, Alunni V, Adalian P, Nogueira L. (2023) Sex estimation from long bones: a machine learning approach. International Journal of Legal Medicine 137(6):1887-1895.
  • Krishan K, Chatterjee PM, Kanchan T, Kaur S, Baryah N, Singh RK. (2016) A review of sex estimation techniques during examination of skeletal remains in forensic anthropology casework. Forensic Science International 261:165-e1.
  • Krogman WM., Iscan MY. (1986) The human skeleton in forensic medicine, Charles C. Thomas, Springfield, IL, 15(2):202-08.
  • Lavelle CLB. (1974) An analysis of human femur. Am J Anat 141:415-426.
  • Lombardo S, Sethi PM, Starkey C. (2005) Intercondylar notch stenosis is not a risk factor for anterior cruciate ligament tears in professional male basketball players: an 11-year prospective study. The American Journal of Sports Medicine 33(1):29-34.
  • Lovejoy CO. (2005) The natural history of human gait and posture: Part 1. Spine and pelvis. Gait Posture 21(1):95-112.
  • Monum T, Prasitwattanseree S, Das S, Siriphimolwat P, Mahakkanukrauh P. (2017) Sex estimation by femur in modern Thai population. Clin Ter 168(3):e203-e207.
  • Nogueira L, Santos F, Castier F, Knecht S, Bernardi C, Alunni V. (2023) Sex assessment using the radius bone in a French sample when applying various statistical models. International Journal of Legal Medicine 137(3):925-934.
  • Olivier G. (1969) Practical Anthropology. Springfield, Illinois, USA: Charles C. Thomas Pub Ltd.
  • Osorio H, Schorwer K, Coronado C, Delgado J, Aravena P. (2012). Anatomía del epífisis proximal del fémur en la población chilena: aspectos traumatológicos forenses. International Journal of Morphology 30(1):258-262.
  • Ousley SD, Jantz RL. (1998) The forensic data bank: documenting skeletal trends in the United States. Forensic osteology: advances in the identification of human remains 2:441-458.
  • Parsons FG. (1914) The characters of the English thigh-bone. Journal of Anatomy and Physiology 48(3):238.
  • Pearson K, Bell J. (1919) A study of the long bones of the English skeleton. Part I. The Femur. Drapers’ Co. Research Memoirs, Biometric Series X, London.
  • Pujari RM. (2013) Evaluation of neck shaft angle of femur on dry bones (Doctoral dissertation, Rajiv Gandhi University of Health Sciences (India)).
  • Purkait R. (2001) Measurements of ulna a new method for determination of sex. Journal of Forensic Sciences 46(4):924-927.
  • Purkait R. (2003) Sex determination from femoral head measurements: a new approach. Legal medicine 5:S347-S350.
  • Purkait R, Chandra H. (2004) A study of sexual variation in Indian femur. Forensic Science International 146(1):25-33.
  • Ramezani M, Shokri V, Ghanbari A, Salehi Z, Niknami KA. (2019). Stature estimation in Iranian population from x-ray measurements of femur and tibia bones. Journal of Forensic Radiology and Imaging 19:100343.
  • Reikeras O, Høiseth A, Regstad A, Fönstelien E. (1982) Femoral neck angles: a specimen study with special regard to bilateral differences. Acta Orthopaedica Scandinavica 53(5):775-779.
  • Robinson MS, Bidmos MA. (2011) An assessment of the accuracy of discriminant function equations for sex determination of the femur and tibia from a South African population. Forensic Science International 206(1-3):212-e1.
  • Shelbourne KD, Gray T, Benner RW. (2007) Intercondylar notch width measurement differences between African American and white men and women with intact anterior cruciate ligament knees. The American Journal of Sports Medicine 35(8):1304-1307.
  • Slaus M, Strinović D, Škavić J, Petrovečki V. (2003) Discriminant function sexing of fragmentary and complete femora: standards for contemporary Croatia. Journal of Forensic Sciences 48(3):JFS2002159.
  • Spradley MK, Jant, RL. (2011) Sex estimation in forensic anthropology: skull versus postcranial elements. Journal of Forensic Sciences 56(2):289-296.
  • Srivastava R, Saini V, Rai RK, Pandey S, Singh TB, Tripathi SK, Pandey AK. (2013) Sexual dimorphism in ulna: an osteometric study from India. Journal of Forensic Sciences 58(5):1251-1256.
  • Steyn M, Iscan MY. (1997) Sex determination from the femur and tibia in South African whites. Forensic Science International 90(1-2):111-119.
  • Stewart KM. (1947) Mohave warfare. Southwestern Journal of Anthropology 3(3):257-278.
  • Stewart TD. (1962) Anterior femoral curvature: its utility for race identification. Human Biology 34(1):49-62.
  • Tallman SD, Blanton AI. (2020) Distal humerus morphological variation and sex estimation in modern Thai individuals. Journal of Forensic Sciences 65(2):361-371.
  • Trancho GJ, Robledo B, Lopez-Bueis I, Sánchez JA. (1997. Sexual determination of the femur using discriminant functions. Analysis of a Spanish population of known sex and age. Journal of Forensic Sciences 42(2):181-185.
  • Upadhyay PW, Mishra A. (2021) Forensic Anthropology. In Biological Anthropology-Applications and Case Studies. IntechOpen.
  • Van Gerven DP. (1972) The contribution of size and shape variation to patterns of sexual dimorphism of the human femur. American Journal of Physical Anthropology 37(1):49-60.
There are 80 citations in total.

Details

Primary Language English
Subjects Forensic Anthropology
Journal Section Research Articles
Authors

Samet Aslan

Şenay Demir Kekeç 0000-0002-4209-9075

Eylem Gül Ateş 0000-0002-6166-2601

Caner İncekaş 0000-0001-9019-423X

Ayla Kürkçüoğlu 0000-0003-4350-4172

İsmail Can Pelin 0000-0003-0901-8883

Project Number KA21/43
Publication Date June 30, 2024
Published in Issue Year 2024 Volume: 14 Issue: 1

Cite

Vancouver Aslan S, Demir Kekeç Ş, Gül Ateş E, İncekaş C, Kürkçüoğlu A, Pelin İC. Sex determination of proximal and distal end of femur on radiological images. Euras J Anthropol. 2024;14(1):15-33.