Research Article
BibTex RIS Cite

Production of indole-3acetic acid (IAA) using Erwinia herbicola with vitreoscilla hemoglobin gene transferred

Year 2020, Volume: 3 Issue: 2, 100 - 105, 29.12.2020

Abstract

İndol-3-asetik asit (IAA) bitkilerde bulunan önemli bir doğal oksin hormonudur. IAA biyosentezi, bitki ile ilişkili bakteriler arasında yaygın bulunan bir durum olup, bu hormonun üretimi için farklı biyosentetik yollar bulunmaktadır. Bu çalışmada, Vitreoscilla hemoglobinin (VHb) geni taşıyan rekombinat Erwinia herbicola’da IAA üretimi araştırılmıştır. E. herbicola’da bu şekilde endojen rekombinant bir oksijen alım sisteminin IAA üzerindeki etkisi ilk defa çalışılmıştır. VHb geni (vgb+) taşıyan rekombinant suşun zengin ve minimal besiyerlerinde ürettiği IAA seviyelerinin yabanıl ve vgb- kontrol suşularından daha yüksek olduğu kaydedildi. Rekombinant suşların konakçıdan önemli derecede yüksek oksijen alımına sahip oldukları belirlendi. En yüksek IAA’nın seviyesi geç kütür fazında L- triptofan içeren kültürlerde saptandı.

Supporting Institution

İnönü Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

2011/10

Thanks

2011/10 nolu proje kapsamında bu çalışmayı destekleyen İnönü Üniversitesi Bilimsel Araştırma Projeleri Birimi’ne ve vermiş olduğu her türlü desteğinden dolayı Doktora Tez Danışmanım Prof. Dr. Hikmet GEÇKİL’e teşekkür ederim.

References

  • Armstrong K.A., 1983. Molecular cloning a laboratory manual maniatis, J. Quarterly Review of Biology, 58(2): p. 234-234.
  • Ates B., et al., 2006. Production of L-asparaginase, a chemotherapeutic enzyme, in bacteria expressing Vitreoscilla hemoglobin, Febs Journal, 273: p. 139-139.
  • Brandl M., Clark E.M., and Lindow S.E., 1996. Characterization of the indole-3 acetic acid (IAA) biosynthetic pathway in an epiphytic strain of Erwinia herbicola and IAA production in vitro, Canadian Journal of Microbiology, 42:6 p. 586-592.
  • Brandl M.T., and Lindow S.E., 1997. Environmental signals modulate the expression of an indole-3-acetic acid biosynthetic gene in Erwinia herbicola, Molecular Plant-Microbe Interactions, 10:4 p. 499-505
  • Brandl M.T., and Lindow S.E., 1998. Contribution of indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Applied and Environmental Microbiology, 64:9 p. 3256-3263.
  • Dikshit K.L., and Webster D.A., 1988. Cloning, characterization and expression of the bacterial globin gene from vitreoscilla in Escherichia coli, Gene, 70(2): p. 377-386.
  • Dikshit K.L., et al., 1989. Oxygen ınhibition of globin gene-transcription and bacterial hemoglobin-synthesis in Vitreoscilla, Journal of General Microbiology, 135: p. 2601-2609.
  • Giddens S.R., Houliston G.J., and Mahanty H.K., 2003. The influence of antibiotic production and pre-emptive colonization on the population dynamics of Pantoea agglomerans (Erwinia herbicola) Eh1087 and Erwinia amylovora in planta, Environmental Microbiology, 5:10 p. 1016-1021. 230:4722 (1985) p. 144-149.
  • Gurel F. and Serbetci T., 2009. Productıon of n-(3-oxo-hexanoyl)-l-homoserıne lactones (ohhl) responsıble for “quorum-sensıng” In Pseudomonas syrıngae Pv. Savastanoı, Turkish Microbiological Society, 39:3-4 p. 58-61.
  • Handelsman J., and Brill W.J., 1985. Erwinia herbicola ısolates from alfalfa plants may play a role in nodulation of alfalfa by Rhizobium meliloti, Applied and Environmental Microbiology, 49:4 p. 818-821.
  • Holmberg N., et al., 1997. Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production, Nature Biotechnology, 15:3 p. 244-247.
  • Khosla, C. and Bailey J.E., 1989. Characterization of the oxygen dependent promoter of the Vitreoscilla Hemoglobin gene in Escherichia coli. Journal of Bacteriology, 171:11 p. 5995-6004.
  • Koul S., et al., 1995. Physical characterization of a glucose dehydrogenase-bearing plasmid from ketoacid-producing Erwinia herbicola, World Journal of Microbiology & Biotechnology, 11:2 p. 234-235.
  • Kroneck P.M.H., et al., 1991. Studies on the bacterial hemoglobin from vitreoscilla - redox properties and spectroscopic characterization of the different forms of the hemoprotein, Biology of Metals, 4: 2 p. 119-125.
  • Kurt A.G., et al., 2000. Production of L-DOPA and dopamine in recombinant bacteria bearing the Vitreoscilla hemoglobin gene, Biotechnol J, 4(7): p.1077-88.
  • Leveau J.H. J. and Lindow S. E., 2005. Utilization of the Plant Hormone Indole-3-Acetic Acid for Growth by Pseudomonas putida Strain 1290, Applied and Environmental Microbiology, 71(5): p. 2365–2371.
  • Mannulis S., et al., 1991. Identification of a plasmid DNA probe for detection of strains of Erwinia herbicola pathogenic on Gypsophila paniculata, Phytopathology, 81: p. 54-57.
  • Manulis S., , et al., 1998. Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv, gypsophilae, Molecular Plant-Microbe Interactions, 11:7 p. 634-642.
  • Ozdal M, Gur Ozdal O, Sezen A, Algur O. F, 2017. Esabi Basaran Kurbanoglu, Continuous production of indole-3-acetic acid by immobilized cells of Arthrobacter agilis, Biotech 7:23.
  • Spaepen S., Vanderleyden J. and Remans R., 2007. Indole-3-acetic acid in microbial and microorganism- plant signaling, Fems Microbiology Reviews, 31:4 p. 425-448.
  • Stijn S., Jos V., and Roseline R., 2000. Indole-3-acetic acid in microbial and microorganism-plant signaling, FEMS Microbiol Rev, p. 1-24.
  • Strohl W.R., et al., 1986. Characterization of Vitreoscilla-Beggiatoides and Vitreoscilla-Filiformis and comparison with Vitreoscilla-Stercoraria and Beggiatoa-Alba, International Journal of Systematic Bacteriology, 36:2 p. 302-313.
  • Vasanthakumar A. and McManus P.S., 2004. Indole-3-acetic acid-producing bacteria are associated with cranberry stem gall, Phytopathology, 94(11): p. 1164-1171.
  • Yürekli F., Geckil H., and Topçuoğlu F., The synthesis of indole-3-acetic acid by the industrially important white-rot fungus Lentinus sajor-caju under different culture conditions, Mycol. Res., 107(3): (2003) p. 305-309.
  • Zelasco S., et al., 2006. Expression of the Vitreoscilla hemoglobin (VHb)-Encoding gene in transgenic white poplar: plant growth and biomass production, biochemical characterization and cell survival under submergence, oxidative and nitrosative stress conditions, Molecular Breeding, 17:3 p. 201-216.
  • Wakabayashi S., Matsubara H., and Webster D.A., 1986. Primary Sequence of a Dimeric Bacterial Hemoglobin from Vitreoscilla. Nature, 322:6078 p. 481-483.
  • Wang Z.N., et al., 2009. Functional expression of Vitreoscilla hemoglobin (VHb) in Arabidopsis relieves submergence, nitrosative, photo-oxidative stress and enhances antioxidants metabolism, Plant Science, 176(1): p. 66-77.

Production of indole-3acetic acid (IAA) using Erwinia herbicola with vitreoscilla hemoglobin gene transferred

Year 2020, Volume: 3 Issue: 2, 100 - 105, 29.12.2020

Abstract

Indole-3-acetic acid (IAA) is an important natural auxin hormone found in plants. IAA biosynthesis is a common condition among plant-related bacteria and there are different biosynthetic ways to produce this hormone. In this study was investigated the production of IAA in E. herbicola carrying the Vitreoscilla hemoglobin (VHb) gene. The effect of endogenous recombinant oxygen intake system on the production of IAA was studied for the first time. The production of IAA in the recombinant strain carrying the VHb gene (vgb +) in rich and poor medium was noted to be higher than in the wild and vgb- control strains. The recombinant strains had significantly higher oxygen uptake than the host. The highest IAA level was observed in the stationary phase cultures rich in L-tryptophan.

Project Number

2011/10

References

  • Armstrong K.A., 1983. Molecular cloning a laboratory manual maniatis, J. Quarterly Review of Biology, 58(2): p. 234-234.
  • Ates B., et al., 2006. Production of L-asparaginase, a chemotherapeutic enzyme, in bacteria expressing Vitreoscilla hemoglobin, Febs Journal, 273: p. 139-139.
  • Brandl M., Clark E.M., and Lindow S.E., 1996. Characterization of the indole-3 acetic acid (IAA) biosynthetic pathway in an epiphytic strain of Erwinia herbicola and IAA production in vitro, Canadian Journal of Microbiology, 42:6 p. 586-592.
  • Brandl M.T., and Lindow S.E., 1997. Environmental signals modulate the expression of an indole-3-acetic acid biosynthetic gene in Erwinia herbicola, Molecular Plant-Microbe Interactions, 10:4 p. 499-505
  • Brandl M.T., and Lindow S.E., 1998. Contribution of indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Applied and Environmental Microbiology, 64:9 p. 3256-3263.
  • Dikshit K.L., and Webster D.A., 1988. Cloning, characterization and expression of the bacterial globin gene from vitreoscilla in Escherichia coli, Gene, 70(2): p. 377-386.
  • Dikshit K.L., et al., 1989. Oxygen ınhibition of globin gene-transcription and bacterial hemoglobin-synthesis in Vitreoscilla, Journal of General Microbiology, 135: p. 2601-2609.
  • Giddens S.R., Houliston G.J., and Mahanty H.K., 2003. The influence of antibiotic production and pre-emptive colonization on the population dynamics of Pantoea agglomerans (Erwinia herbicola) Eh1087 and Erwinia amylovora in planta, Environmental Microbiology, 5:10 p. 1016-1021. 230:4722 (1985) p. 144-149.
  • Gurel F. and Serbetci T., 2009. Productıon of n-(3-oxo-hexanoyl)-l-homoserıne lactones (ohhl) responsıble for “quorum-sensıng” In Pseudomonas syrıngae Pv. Savastanoı, Turkish Microbiological Society, 39:3-4 p. 58-61.
  • Handelsman J., and Brill W.J., 1985. Erwinia herbicola ısolates from alfalfa plants may play a role in nodulation of alfalfa by Rhizobium meliloti, Applied and Environmental Microbiology, 49:4 p. 818-821.
  • Holmberg N., et al., 1997. Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production, Nature Biotechnology, 15:3 p. 244-247.
  • Khosla, C. and Bailey J.E., 1989. Characterization of the oxygen dependent promoter of the Vitreoscilla Hemoglobin gene in Escherichia coli. Journal of Bacteriology, 171:11 p. 5995-6004.
  • Koul S., et al., 1995. Physical characterization of a glucose dehydrogenase-bearing plasmid from ketoacid-producing Erwinia herbicola, World Journal of Microbiology & Biotechnology, 11:2 p. 234-235.
  • Kroneck P.M.H., et al., 1991. Studies on the bacterial hemoglobin from vitreoscilla - redox properties and spectroscopic characterization of the different forms of the hemoprotein, Biology of Metals, 4: 2 p. 119-125.
  • Kurt A.G., et al., 2000. Production of L-DOPA and dopamine in recombinant bacteria bearing the Vitreoscilla hemoglobin gene, Biotechnol J, 4(7): p.1077-88.
  • Leveau J.H. J. and Lindow S. E., 2005. Utilization of the Plant Hormone Indole-3-Acetic Acid for Growth by Pseudomonas putida Strain 1290, Applied and Environmental Microbiology, 71(5): p. 2365–2371.
  • Mannulis S., et al., 1991. Identification of a plasmid DNA probe for detection of strains of Erwinia herbicola pathogenic on Gypsophila paniculata, Phytopathology, 81: p. 54-57.
  • Manulis S., , et al., 1998. Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv, gypsophilae, Molecular Plant-Microbe Interactions, 11:7 p. 634-642.
  • Ozdal M, Gur Ozdal O, Sezen A, Algur O. F, 2017. Esabi Basaran Kurbanoglu, Continuous production of indole-3-acetic acid by immobilized cells of Arthrobacter agilis, Biotech 7:23.
  • Spaepen S., Vanderleyden J. and Remans R., 2007. Indole-3-acetic acid in microbial and microorganism- plant signaling, Fems Microbiology Reviews, 31:4 p. 425-448.
  • Stijn S., Jos V., and Roseline R., 2000. Indole-3-acetic acid in microbial and microorganism-plant signaling, FEMS Microbiol Rev, p. 1-24.
  • Strohl W.R., et al., 1986. Characterization of Vitreoscilla-Beggiatoides and Vitreoscilla-Filiformis and comparison with Vitreoscilla-Stercoraria and Beggiatoa-Alba, International Journal of Systematic Bacteriology, 36:2 p. 302-313.
  • Vasanthakumar A. and McManus P.S., 2004. Indole-3-acetic acid-producing bacteria are associated with cranberry stem gall, Phytopathology, 94(11): p. 1164-1171.
  • Yürekli F., Geckil H., and Topçuoğlu F., The synthesis of indole-3-acetic acid by the industrially important white-rot fungus Lentinus sajor-caju under different culture conditions, Mycol. Res., 107(3): (2003) p. 305-309.
  • Zelasco S., et al., 2006. Expression of the Vitreoscilla hemoglobin (VHb)-Encoding gene in transgenic white poplar: plant growth and biomass production, biochemical characterization and cell survival under submergence, oxidative and nitrosative stress conditions, Molecular Breeding, 17:3 p. 201-216.
  • Wakabayashi S., Matsubara H., and Webster D.A., 1986. Primary Sequence of a Dimeric Bacterial Hemoglobin from Vitreoscilla. Nature, 322:6078 p. 481-483.
  • Wang Z.N., et al., 2009. Functional expression of Vitreoscilla hemoglobin (VHb) in Arabidopsis relieves submergence, nitrosative, photo-oxidative stress and enhances antioxidants metabolism, Plant Science, 176(1): p. 66-77.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Research Articles
Authors

Aslı Giray 0000-0002-5374-3727

Hikmet Geçkil This is me

Project Number 2011/10
Publication Date December 29, 2020
Acceptance Date December 24, 2020
Published in Issue Year 2020 Volume: 3 Issue: 2

Cite

APA Giray, A., & Geçkil, H. (2020). Production of indole-3acetic acid (IAA) using Erwinia herbicola with vitreoscilla hemoglobin gene transferred. Eurasian Journal of Biological and Chemical Sciences, 3(2), 100-105.
AMA Giray A, Geçkil H. Production of indole-3acetic acid (IAA) using Erwinia herbicola with vitreoscilla hemoglobin gene transferred. Eurasian J. Bio. Chem. Sci. December 2020;3(2):100-105.
Chicago Giray, Aslı, and Hikmet Geçkil. “Production of Indole-3acetic Acid (IAA) Using Erwinia Herbicola With Vitreoscilla Hemoglobin Gene Transferred”. Eurasian Journal of Biological and Chemical Sciences 3, no. 2 (December 2020): 100-105.
EndNote Giray A, Geçkil H (December 1, 2020) Production of indole-3acetic acid (IAA) using Erwinia herbicola with vitreoscilla hemoglobin gene transferred. Eurasian Journal of Biological and Chemical Sciences 3 2 100–105.
IEEE A. Giray and H. Geçkil, “Production of indole-3acetic acid (IAA) using Erwinia herbicola with vitreoscilla hemoglobin gene transferred”, Eurasian J. Bio. Chem. Sci., vol. 3, no. 2, pp. 100–105, 2020.
ISNAD Giray, Aslı - Geçkil, Hikmet. “Production of Indole-3acetic Acid (IAA) Using Erwinia Herbicola With Vitreoscilla Hemoglobin Gene Transferred”. Eurasian Journal of Biological and Chemical Sciences 3/2 (December 2020), 100-105.
JAMA Giray A, Geçkil H. Production of indole-3acetic acid (IAA) using Erwinia herbicola with vitreoscilla hemoglobin gene transferred. Eurasian J. Bio. Chem. Sci. 2020;3:100–105.
MLA Giray, Aslı and Hikmet Geçkil. “Production of Indole-3acetic Acid (IAA) Using Erwinia Herbicola With Vitreoscilla Hemoglobin Gene Transferred”. Eurasian Journal of Biological and Chemical Sciences, vol. 3, no. 2, 2020, pp. 100-5.
Vancouver Giray A, Geçkil H. Production of indole-3acetic acid (IAA) using Erwinia herbicola with vitreoscilla hemoglobin gene transferred. Eurasian J. Bio. Chem. Sci. 2020;3(2):100-5.