Araştırma Makalesi
BibTex RIS Kaynak Göster

Alüminyum oksit’in Galleria mellonella (L.) (Lepidoptera: Pyralidae) Larvalarında Total Hemosit Sayıları Üzerine Etkileri

Yıl 2020, Cilt: 3 Sayı: (Suppl 1), 195 - 198, 31.12.2020

Öz

Ağır metaller, çevre kirliliğinin önemli etkenlerinden biridir. Ağır metal kirliliği sadece hayvanlarda büyüme, üreme, hayatta kalma ve metabolizma ile değil aynı zamanda doğuştan gelen bağışıklık sisteminde de zararlı etkilere neden olabilir. Yapılan çalışmada, Galleria mellonella son evre larvalarının birinci arka bacaklarına Al2O3 çözeltisinin farklı derişimleri (10, 50 ve 100 µg/mL) Hamilton enjektörü yardımıyla enjekte edilerek 2, 4 ve 8 saatlik sürelere maruz bırakılmıştır. Uygulama sonunda kontrol ve deneme gruplarından alınan hemolenf örnekleri ile total hemosit sayısı belirlenmiştir. Elde edilen veriler sonucunda, Al2O3 çözeltisine maruz bırakılan G. mellonella larvalarının maruz bırakılan etki sürelerinde total hemosit sayısında kontrole göre tüm konsantrasyonlarda azalma meydana gelmiş ve bu azalma istatistiki açıdan önemli bulunmuştur. G.mellonella larvalarının total hemosit sayılarında meydana gelen bu değişimler, çevre kirliliği düzeylerini değerlendirmede iyi bir model organizma olarak kullanılabilirliğini ve başka türler üzerinde de yapılacak immünolojik ve fizyolojik çalışmalara yol gösterebileceğini ortaya koymuştur.

Destekleyen Kurum

çukurova üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

FBA- 2020- 12547

Teşekkür

Yapılan çalışma, Çukurova Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir (FBA- 2020- 12547). Aynı zamanda bu çalışma, Gaziantep’te gerçekleştirilen 2nd International Eurasian Conference on Science, Engineering and Technolog (EurasianSciEnTech 2020) kongresinde sözlü bildiri olarak sunulmuştur.

Kaynakça

  • Agarwal, S.K., Ayyash, L., Gourley, C.S., Levy, J., Faber, K., Hughes, C.L.Jr. (1996). Evaluation of the developmental neuroendocrine and reproductive toxicology of aluminium. Food Chem. Toxicol. 34, 49-53.
  • Alkan, U., Teksoy, A., Başkaya, S.H. (2006) .Yüzeysel sulardaki doğal organik maddelerin gideriminde uygun koagülasyon şartlarının belirlenmesi. Ekoloji, 15(59), 18-26.
  • Banville, N., Browne, N., Kavanagh, K. (2012). Effect of nutrient deprivation on the susceptibility of Galleria mellonella larvae to infection. Virulence, 3(6), 497-503.
  • Barabasz, W., Albinska, D., Jaskowska, M., Lipiec, J. (2002). Ecotoxicology of Aluminium. Polish Journal of Environmental Studies, 11(3), 199-203.
  • Bargagli, R. (2000). Trace metals in Antarctica related to climate change and increasing human impact. Reviews of Environmental Contamination and Toxicology, 166: 129 173. Bergin, D., Brennan, M. & Kavanagh, K. (2003). Fluctuations in haemocyte density and microbial load may be used as indicators of fungal pathogenicity in larvae of Galleria mellonella. Microbes Infect, 5, 1389-1395.
  • Bronksil, J.F. (1961). A Cage to Simplify the Rearing of The Greater Wax Moth, Galleria mellonella (Pyralidae). Journal of Lepidopteran Society, 102-104.
  • Büsselberg, D., and Florea, A.M. (2006). Occurrence, use and potential toxic effects of metals and metal compounds. BioMetals , 19: 419–427.
  • El-Demerdash, F.M., Baghdadi, H.H., Ghanem, N.F., Al Mhanna, A.B. (2020). Nephroprotective role of bromelain against oxidative injury induced by aluminium in rats. Environmental Toxicology and Pharmacology,80, 103509.
  • Eskin, A.,Öztürk, Ş., and Körükçü, M. (2019). Determination of the acute toxic effects of zinc oxide nanoparticles (ZnO NPs) in total hemocytes counts of Galleria mellonella (Lepidoptera: Pyralidae) with two different methods, Ecotoxicology ; 28:801–808.
  • Florea, A.M., Dopp, E., Obe, G., Rettenmeier ,A.W. (2004). Genotoxicity of organometallic species. In: Hirner AV, Emons H, eds. Organic Metal and Metalloid Species in the Environment: Analysis, Distribution, Processes and Toxicological Evaluation. Heidelberg: Springer-Verlag, pp. 205–219.
  • Florea ,A.M. (2005). Toxicity of Alkylated Derivatives of Arsenic, Antimony and Tin: Cellular Uptake, Cytotoxicity, Genotoxic Effects, Perturbation of Ca2+ Homeostasis and Cell Death. Aachen: Shaker Verlag.
  • Gupta,V. (2013). Mammalian Feces as Bio-Indicator of Heavy Metal Contamination in Bikaner Zoological Garden, Rajasthan, India. Research Journal of Animal, Veterinary and Fishery Sciences, 1(5), 10-15.
  • Hawkes, J.S. (1997). Heavy metals, Journal of . Chemical Education,74 (11) : 1374.
  • Jones, J.C. (1962). Current Concepts Corncerning Insect Hemocytes. American Zoology, 2:209-246.
  • Kacsoh, B.Z., Schlenke, T.A. (2012). High hemocyte load is associated with increased resistance against parasitoids in Drosophila suzukii, a relative of D. melanogaster. PLoS One. https://doi.org/10.1371/journal.pone.0034721.
  • Onur, E. (1997). Alüminyum Toksisitesinin Kalite Kontrol Açısından Değerlendirilmesi. Türk Nefroloji Diyaliz ve Transplantasyon Dergisi, 6, 164-170.
  • Pandey, R., Dwivedi, M.K., Singh, P.K., Patel, B., Pandey, S., Patel, B., Patel, A. & Singh, B. (2016). Effluences of heavy metals, way of exposure and bio-toxic impacts: an update. Journal of Chemistry and Chemical Sciences, 6(5), 458-475.
  • Pastacı, N., Bahtiyar, N., Karabük, S., Gönül, R., Or, E.M., Dursun, Ş., Barutçu, B.Ü. (2010). Köpeklerde Alüminyum toksikasyonunun Alzheimer hastalığı üzerine Etkisi. Tübav Bilim Dergisi, 3(3), 271-275.
  • Pehlivan, M. (2018). Alüminyum oksit nanopartiküllerin ve demir bazlı manyetik alüminyum oksit nanokompozitlerin çözelti yakma metodu ile sentezi ve uygulamaları.Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü. İstanbul, Türkiye, 163s.
  • Piriyawong, V., Thongpool, V., Asanithi P., Limsuwan, P., (2012). “Preparation and Characterization of Alumina Nanoparticles in DeionizedWater Using Laser Ablation Technique”, Journal of Nanomaterials, 1-6. Sadhu, S.D.,Garg , M., Kumar ,A. (2018) . Major Environmental Issues and New Materials .New Polymer Nanocomposites for Environmental Remediation ,s. 77- 97 .
  • Sendi, J.J., Baghban, A., Zibaee,A. (2018). Effect of essential and non-essential elements on cellular immune system of cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). ISJ, 15: 158-168. Suganya , M., Karthi, S., and Shivakumar, M.S. (2016) . Effect of Cd and Lead Exposure on Tissue Spesific Antioxidant Response in Spodoptera litura Free Radicals and Antioxidants, Vol.6: 90-100.
  • Symon, C., Hutton,M. (1986). The quantities of cadmium, lead, mercury and arsenic entering the U.K. environment from human activities.Science Of The Total Environment, 57: 129–150.
  • Willhite, C.C., Karyakina, N.A., Yokel, R.A., Yenugadhati , N., Wisniewski , T.M., Arnold, I.M., Momoli, F., Krewski , D. (2014). Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit. Rev. Toxicol.44, 1-80.
  • Wu, G., Yi, Y. (2015). Effects of dietary heavy metals on the immune and antioxidant systems of Galleria mellonella larvae. Comparative Biochemical and Physiology C Toxicology and Pharmacology.,167:131- 139.
  • Wu, G., Liu Y., Ding Y., Yi Y. (2016). Ultrastructural and functional characterization of circulatinghemocytes from Galleria mellonella larva: Cell types and their role inthe innate immunity. Tissue and Cell, 48, 297-304.
  • Yılmaz, E.(2013).Farklı dozlardaki Alüminyum Klorür’ün Galleria mellonella (L.) (Lepidoptera: Pyralidae)’nın Biyolojisine ve Hemositlerine etkisi. Yüksek Lisans Tezi, Marmara Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye,65s.

Effects of Aluminum Oxide on Total Hemocyte Counts of Galleria mellonella (L.) (Lepidoptera: Pyralidae) Larvae

Yıl 2020, Cilt: 3 Sayı: (Suppl 1), 195 - 198, 31.12.2020

Öz

The heavy metals are one of the important factors of environmental pollution. Heavy metal pollution can cause adverse effect not only on growth, reproduction, survival, and metabolism in animals, but also effects the innate immune system adversely. Different concentrations of Al2O3 solution (10, 50 and 100 µg/mL) were injected into the proleg of the last instar Galleria mellonella larvae by Hamilton injector for 2, 4 and 8 hours. Then, the total hemocyte count was determined with the hemolymph obtained from the control and experimental groups. As a result of the data obtained, G. mellonella larvae exposed to Al2O3 solution showed a decrease in total hemocyte count in 2, 4 and 8 hours in all concentrations compared to the control and this reduction was found to be statistically significant. Changes in hemocyte numbers of G. mellonella larvae have shown that it can be used as a good model organism in evaluating environmental pollution levels and it can also lead to immunological and physiological studies on other species.

Proje Numarası

FBA- 2020- 12547

Kaynakça

  • Agarwal, S.K., Ayyash, L., Gourley, C.S., Levy, J., Faber, K., Hughes, C.L.Jr. (1996). Evaluation of the developmental neuroendocrine and reproductive toxicology of aluminium. Food Chem. Toxicol. 34, 49-53.
  • Alkan, U., Teksoy, A., Başkaya, S.H. (2006) .Yüzeysel sulardaki doğal organik maddelerin gideriminde uygun koagülasyon şartlarının belirlenmesi. Ekoloji, 15(59), 18-26.
  • Banville, N., Browne, N., Kavanagh, K. (2012). Effect of nutrient deprivation on the susceptibility of Galleria mellonella larvae to infection. Virulence, 3(6), 497-503.
  • Barabasz, W., Albinska, D., Jaskowska, M., Lipiec, J. (2002). Ecotoxicology of Aluminium. Polish Journal of Environmental Studies, 11(3), 199-203.
  • Bargagli, R. (2000). Trace metals in Antarctica related to climate change and increasing human impact. Reviews of Environmental Contamination and Toxicology, 166: 129 173. Bergin, D., Brennan, M. & Kavanagh, K. (2003). Fluctuations in haemocyte density and microbial load may be used as indicators of fungal pathogenicity in larvae of Galleria mellonella. Microbes Infect, 5, 1389-1395.
  • Bronksil, J.F. (1961). A Cage to Simplify the Rearing of The Greater Wax Moth, Galleria mellonella (Pyralidae). Journal of Lepidopteran Society, 102-104.
  • Büsselberg, D., and Florea, A.M. (2006). Occurrence, use and potential toxic effects of metals and metal compounds. BioMetals , 19: 419–427.
  • El-Demerdash, F.M., Baghdadi, H.H., Ghanem, N.F., Al Mhanna, A.B. (2020). Nephroprotective role of bromelain against oxidative injury induced by aluminium in rats. Environmental Toxicology and Pharmacology,80, 103509.
  • Eskin, A.,Öztürk, Ş., and Körükçü, M. (2019). Determination of the acute toxic effects of zinc oxide nanoparticles (ZnO NPs) in total hemocytes counts of Galleria mellonella (Lepidoptera: Pyralidae) with two different methods, Ecotoxicology ; 28:801–808.
  • Florea, A.M., Dopp, E., Obe, G., Rettenmeier ,A.W. (2004). Genotoxicity of organometallic species. In: Hirner AV, Emons H, eds. Organic Metal and Metalloid Species in the Environment: Analysis, Distribution, Processes and Toxicological Evaluation. Heidelberg: Springer-Verlag, pp. 205–219.
  • Florea ,A.M. (2005). Toxicity of Alkylated Derivatives of Arsenic, Antimony and Tin: Cellular Uptake, Cytotoxicity, Genotoxic Effects, Perturbation of Ca2+ Homeostasis and Cell Death. Aachen: Shaker Verlag.
  • Gupta,V. (2013). Mammalian Feces as Bio-Indicator of Heavy Metal Contamination in Bikaner Zoological Garden, Rajasthan, India. Research Journal of Animal, Veterinary and Fishery Sciences, 1(5), 10-15.
  • Hawkes, J.S. (1997). Heavy metals, Journal of . Chemical Education,74 (11) : 1374.
  • Jones, J.C. (1962). Current Concepts Corncerning Insect Hemocytes. American Zoology, 2:209-246.
  • Kacsoh, B.Z., Schlenke, T.A. (2012). High hemocyte load is associated with increased resistance against parasitoids in Drosophila suzukii, a relative of D. melanogaster. PLoS One. https://doi.org/10.1371/journal.pone.0034721.
  • Onur, E. (1997). Alüminyum Toksisitesinin Kalite Kontrol Açısından Değerlendirilmesi. Türk Nefroloji Diyaliz ve Transplantasyon Dergisi, 6, 164-170.
  • Pandey, R., Dwivedi, M.K., Singh, P.K., Patel, B., Pandey, S., Patel, B., Patel, A. & Singh, B. (2016). Effluences of heavy metals, way of exposure and bio-toxic impacts: an update. Journal of Chemistry and Chemical Sciences, 6(5), 458-475.
  • Pastacı, N., Bahtiyar, N., Karabük, S., Gönül, R., Or, E.M., Dursun, Ş., Barutçu, B.Ü. (2010). Köpeklerde Alüminyum toksikasyonunun Alzheimer hastalığı üzerine Etkisi. Tübav Bilim Dergisi, 3(3), 271-275.
  • Pehlivan, M. (2018). Alüminyum oksit nanopartiküllerin ve demir bazlı manyetik alüminyum oksit nanokompozitlerin çözelti yakma metodu ile sentezi ve uygulamaları.Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü. İstanbul, Türkiye, 163s.
  • Piriyawong, V., Thongpool, V., Asanithi P., Limsuwan, P., (2012). “Preparation and Characterization of Alumina Nanoparticles in DeionizedWater Using Laser Ablation Technique”, Journal of Nanomaterials, 1-6. Sadhu, S.D.,Garg , M., Kumar ,A. (2018) . Major Environmental Issues and New Materials .New Polymer Nanocomposites for Environmental Remediation ,s. 77- 97 .
  • Sendi, J.J., Baghban, A., Zibaee,A. (2018). Effect of essential and non-essential elements on cellular immune system of cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). ISJ, 15: 158-168. Suganya , M., Karthi, S., and Shivakumar, M.S. (2016) . Effect of Cd and Lead Exposure on Tissue Spesific Antioxidant Response in Spodoptera litura Free Radicals and Antioxidants, Vol.6: 90-100.
  • Symon, C., Hutton,M. (1986). The quantities of cadmium, lead, mercury and arsenic entering the U.K. environment from human activities.Science Of The Total Environment, 57: 129–150.
  • Willhite, C.C., Karyakina, N.A., Yokel, R.A., Yenugadhati , N., Wisniewski , T.M., Arnold, I.M., Momoli, F., Krewski , D. (2014). Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit. Rev. Toxicol.44, 1-80.
  • Wu, G., Yi, Y. (2015). Effects of dietary heavy metals on the immune and antioxidant systems of Galleria mellonella larvae. Comparative Biochemical and Physiology C Toxicology and Pharmacology.,167:131- 139.
  • Wu, G., Liu Y., Ding Y., Yi Y. (2016). Ultrastructural and functional characterization of circulatinghemocytes from Galleria mellonella larva: Cell types and their role inthe innate immunity. Tissue and Cell, 48, 297-304.
  • Yılmaz, E.(2013).Farklı dozlardaki Alüminyum Klorür’ün Galleria mellonella (L.) (Lepidoptera: Pyralidae)’nın Biyolojisine ve Hemositlerine etkisi. Yüksek Lisans Tezi, Marmara Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye,65s.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Ayşe Kara Bu kişi benim 0000-0003-2642-1914

Pınar Özalp

Benay Tunçsoy 0000-0003-4361-3475

Proje Numarası FBA- 2020- 12547
Yayımlanma Tarihi 31 Aralık 2020
Kabul Tarihi 25 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: (Suppl 1)

Kaynak Göster

APA Kara, A., Özalp, P., & Tunçsoy, B. (2020). Alüminyum oksit’in Galleria mellonella (L.) (Lepidoptera: Pyralidae) Larvalarında Total Hemosit Sayıları Üzerine Etkileri. Eurasian Journal of Biological and Chemical Sciences, 3((Suppl 1), 195-198.
AMA Kara A, Özalp P, Tunçsoy B. Alüminyum oksit’in Galleria mellonella (L.) (Lepidoptera: Pyralidae) Larvalarında Total Hemosit Sayıları Üzerine Etkileri. Eurasian J. Bio. Chem. Sci. Aralık 2020;3((Suppl 1):195-198.
Chicago Kara, Ayşe, Pınar Özalp, ve Benay Tunçsoy. “Alüminyum oksit’in Galleria Mellonella (L.) (Lepidoptera: Pyralidae) Larvalarında Total Hemosit Sayıları Üzerine Etkileri”. Eurasian Journal of Biological and Chemical Sciences 3, sy. (Suppl 1) (Aralık 2020): 195-98.
EndNote Kara A, Özalp P, Tunçsoy B (01 Aralık 2020) Alüminyum oksit’in Galleria mellonella (L.) (Lepidoptera: Pyralidae) Larvalarında Total Hemosit Sayıları Üzerine Etkileri. Eurasian Journal of Biological and Chemical Sciences 3 (Suppl 1) 195–198.
IEEE A. Kara, P. Özalp, ve B. Tunçsoy, “Alüminyum oksit’in Galleria mellonella (L.) (Lepidoptera: Pyralidae) Larvalarında Total Hemosit Sayıları Üzerine Etkileri”, Eurasian J. Bio. Chem. Sci., c. 3, sy. (Suppl 1), ss. 195–198, 2020.
ISNAD Kara, Ayşe vd. “Alüminyum oksit’in Galleria Mellonella (L.) (Lepidoptera: Pyralidae) Larvalarında Total Hemosit Sayıları Üzerine Etkileri”. Eurasian Journal of Biological and Chemical Sciences 3/(Suppl 1) (Aralık 2020), 195-198.
JAMA Kara A, Özalp P, Tunçsoy B. Alüminyum oksit’in Galleria mellonella (L.) (Lepidoptera: Pyralidae) Larvalarında Total Hemosit Sayıları Üzerine Etkileri. Eurasian J. Bio. Chem. Sci. 2020;3:195–198.
MLA Kara, Ayşe vd. “Alüminyum oksit’in Galleria Mellonella (L.) (Lepidoptera: Pyralidae) Larvalarında Total Hemosit Sayıları Üzerine Etkileri”. Eurasian Journal of Biological and Chemical Sciences, c. 3, sy. (Suppl 1), 2020, ss. 195-8.
Vancouver Kara A, Özalp P, Tunçsoy B. Alüminyum oksit’in Galleria mellonella (L.) (Lepidoptera: Pyralidae) Larvalarında Total Hemosit Sayıları Üzerine Etkileri. Eurasian J. Bio. Chem. Sci. 2020;3((Suppl 1):195-8.