Research Article
BibTex RIS Cite
Year 2019, , 61 - 67, 21.12.2019
https://doi.org/10.33904/ejfe.582276

Abstract

References

  • Agarwal, N., Rathod, U., 2006. Defining ‘success’ for software projects: An exploratory revelation. International Journal of Project Management, 24(4): 358-370.
  • Buğday, E., Özel, H.B., 2019. Utilizing a fuzzy inference system (FIS) and modified analytical hierarchical analysis for forest road network planning in afforested lands. Polish Journal of Environmental Studies, 28(3):1579-1589. https://doi.org/10.15244/pjoes/89611.
  • Catani, F., Lagomarsino, D., Segoni, S., Tofani, V., 2013. Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Natural Hazards and Earth System Sciences, 13(11):2815-2831.
  • Cevik, E., Topal, T., 2003. GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology, 44(8) 949-962.
  • Duman, T.Y., Çan, T., Emre, Ö., 2011. 1/1.500.000 Turkey landslide inventory map, General Directorate of Mineral Research and Exploration, Special Publications Series, No: 27, Ankara, Turkey. ISBN: 978-605-4075-85-3.
  • Ercanoglu, M., Gokceoglu, C., 2004. Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Engineering Geology, 75(3-4), 229-250.
  • Ermini, L., Catani, F., Casagli, N., 2005. Artificial neural networks applied to landslide susceptibility assessment. Geomorphology, 66(1-4):327-343.
  • Felicísimo, Á.M., Cuartero, A., Remondo, J., Quirós, E., 2013. Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides, 10(2):175-189.
  • Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., Savage, W. Z., 2008. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering Geology, 102(3-4): 99-111.
  • Ghorbanzadeh, O., Blaschke, T., Aryal, J., Gholaminia, K., 2018. A new GIS-based technique using an adaptive neuro-fuzzy inference system for land subsidence susceptibility mapping. Journal of Spatial Science, 1-17.
  • Gokceoglu, C. Aksoy, H. 1996. Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Engineering Geology, 44:147–161.
  • Intarawichian, N., Dasananda, S., 2010. Analytical hierarchy process for landslide susceptibility mapping in lower Mae Chaem watershed, northern Thailand. Suranaree Journal of Science & Technology, 17(3).
  • Jaafari, A., Najafi, A., Pourghasemi, H. R., Rezaeian, J., Sattarian, A., 2014. GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. International Journal of Environmental Science and Technology, 11(4): 909-926.
  • Lee, S., 2005. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. International Journal of Remote Sensing, 26(7): 1477-1491.
  • Micheletti, N., Foresti, L., Robert, S., Leuenberger, M., Pedrazzini, A., Jaboyedoff, M., Kanevski, M., 2014. Machine learning feature selection methods for landslide susceptibility mapping. Mathematical Geosciences, 46(1):33-57.
  • Moore, I.D., Grayson, R.B., Ladson, A. R. 1991. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3-30.
  • Nandi, A., Shakoor, A., 2010. A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110(1-2):11-20.
  • NASA, 2019. https://asterweb.jpl.nasa.gov/data.asp. Access date: 16/04/2019
  • Osna, T., Sezer, E. A., Akgun, A., 2014. GeoFIS: an integrated tool for the assessment of landslide susceptibility. Computers & Geosciences, 66:20-30.
  • Özdemir, A., Altural, T. 2013. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64:180-197.
  • Park, I., Choi, J., Lee, M. J., Lee, S., 2012. Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping. Computers & Geosciences, 48:228-238.
  • Park, S., Choi, C., Kim, B., Kim, J., 2013. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environmental Earth Sciences, 68(5): 1443-1464.
  • Pourghasemi, H.R., Jirandeh, A.G., Pradhan, B., Xu, C., Gokceoglu, C., 2013. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. Journal of Earth System Science, 122(2), 349-369.
  • Pourghasemi, H.R., Rossi, M., 2017. Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods. Theoretical and Applied Climatology, 130(1-2):609-633.
  • Pradhan, B., 2010. Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38(2):301-320.
  • Pradhan, B., 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51:350-365.
  • Quan, H.C., Lee, B.G., 2012. GIS-based landslide susceptibility mapping using analytic hierarchy process and artificial neural network in Jeju (Korea). KSCE Journal of Civil Engineering, 16(7):1258-1266.
  • Regmi, A.D., Devkota, K.C., Yoshida, K., Pradhan, B., Pourghasemi, H. R., Kumamoto, T., Akgun, A., 2014. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7(2), 725-742.
  • Sahin, E.K., Colkesen, I., Kavzoglu, T., 2018. A comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mapping. Geocarto International, 1-23.
  • Sezer, E.A., Nefeslioglu, H.A., Osna, T., 2017. An expert-based landslide susceptibility mapping (LSM) module developed for Netcad architect software. Computers & Geosciences, 98:26-37.
  • Van Westen, C.J., Rengers, N., Soeters, R., 2003. Use of geomorphological information in indirect landslide susceptibility assessment. Natural Hazards, 30(3):399-419.
  • Yalcin, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena, 72(1):1-12.
  • Yesilnacar, E., Topal, T., 2005. Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3-4):251-266.
  • Youssef, A. M., Pourghasemi, H.R., Pourtaghi, Z.S., Al-Katheeri, M. M., 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 13(5):839-856.

Landslide Susceptibility Mapping Using Different Modeling Approaches in Forested Areas (Sample of Çankırı-Yapraklı)

Year 2019, , 61 - 67, 21.12.2019
https://doi.org/10.33904/ejfe.582276

Abstract

The
effective management of forest resources is very important for the future of
the forest and to meet both ecological and economic needs. In this study, it is
aimed to contribute to the applicability of modeling in practice by identifying
regions that may be landslide in forest areas via different modeling
approaches. A total of six models were created by using four criteria
(elevation, slope, aspect and stream power index) and using Fuzzy Inference
System (FIS) and Modified-Analytic Hierarchy Process (M-AHP) approaches in this
study. The model’s performance was measured using the Receiver Operating
Characteristic (ROC) curve and Area Under Curve (AUC). According to the results
of study, the most successful model was determined as FIS Model 1 with the AUC
value of 82.1% and M-AHP Model 1 with the AUC value of 80.9%. This study
provides important outputs that indicates the potential benefits of using
landslide susceptibility mapping in the fields of forest harvesting, road
network planning and forest management. 

References

  • Agarwal, N., Rathod, U., 2006. Defining ‘success’ for software projects: An exploratory revelation. International Journal of Project Management, 24(4): 358-370.
  • Buğday, E., Özel, H.B., 2019. Utilizing a fuzzy inference system (FIS) and modified analytical hierarchical analysis for forest road network planning in afforested lands. Polish Journal of Environmental Studies, 28(3):1579-1589. https://doi.org/10.15244/pjoes/89611.
  • Catani, F., Lagomarsino, D., Segoni, S., Tofani, V., 2013. Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Natural Hazards and Earth System Sciences, 13(11):2815-2831.
  • Cevik, E., Topal, T., 2003. GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology, 44(8) 949-962.
  • Duman, T.Y., Çan, T., Emre, Ö., 2011. 1/1.500.000 Turkey landslide inventory map, General Directorate of Mineral Research and Exploration, Special Publications Series, No: 27, Ankara, Turkey. ISBN: 978-605-4075-85-3.
  • Ercanoglu, M., Gokceoglu, C., 2004. Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Engineering Geology, 75(3-4), 229-250.
  • Ermini, L., Catani, F., Casagli, N., 2005. Artificial neural networks applied to landslide susceptibility assessment. Geomorphology, 66(1-4):327-343.
  • Felicísimo, Á.M., Cuartero, A., Remondo, J., Quirós, E., 2013. Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides, 10(2):175-189.
  • Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., Savage, W. Z., 2008. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering Geology, 102(3-4): 99-111.
  • Ghorbanzadeh, O., Blaschke, T., Aryal, J., Gholaminia, K., 2018. A new GIS-based technique using an adaptive neuro-fuzzy inference system for land subsidence susceptibility mapping. Journal of Spatial Science, 1-17.
  • Gokceoglu, C. Aksoy, H. 1996. Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Engineering Geology, 44:147–161.
  • Intarawichian, N., Dasananda, S., 2010. Analytical hierarchy process for landslide susceptibility mapping in lower Mae Chaem watershed, northern Thailand. Suranaree Journal of Science & Technology, 17(3).
  • Jaafari, A., Najafi, A., Pourghasemi, H. R., Rezaeian, J., Sattarian, A., 2014. GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. International Journal of Environmental Science and Technology, 11(4): 909-926.
  • Lee, S., 2005. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. International Journal of Remote Sensing, 26(7): 1477-1491.
  • Micheletti, N., Foresti, L., Robert, S., Leuenberger, M., Pedrazzini, A., Jaboyedoff, M., Kanevski, M., 2014. Machine learning feature selection methods for landslide susceptibility mapping. Mathematical Geosciences, 46(1):33-57.
  • Moore, I.D., Grayson, R.B., Ladson, A. R. 1991. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3-30.
  • Nandi, A., Shakoor, A., 2010. A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110(1-2):11-20.
  • NASA, 2019. https://asterweb.jpl.nasa.gov/data.asp. Access date: 16/04/2019
  • Osna, T., Sezer, E. A., Akgun, A., 2014. GeoFIS: an integrated tool for the assessment of landslide susceptibility. Computers & Geosciences, 66:20-30.
  • Özdemir, A., Altural, T. 2013. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64:180-197.
  • Park, I., Choi, J., Lee, M. J., Lee, S., 2012. Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping. Computers & Geosciences, 48:228-238.
  • Park, S., Choi, C., Kim, B., Kim, J., 2013. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environmental Earth Sciences, 68(5): 1443-1464.
  • Pourghasemi, H.R., Jirandeh, A.G., Pradhan, B., Xu, C., Gokceoglu, C., 2013. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. Journal of Earth System Science, 122(2), 349-369.
  • Pourghasemi, H.R., Rossi, M., 2017. Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods. Theoretical and Applied Climatology, 130(1-2):609-633.
  • Pradhan, B., 2010. Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38(2):301-320.
  • Pradhan, B., 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51:350-365.
  • Quan, H.C., Lee, B.G., 2012. GIS-based landslide susceptibility mapping using analytic hierarchy process and artificial neural network in Jeju (Korea). KSCE Journal of Civil Engineering, 16(7):1258-1266.
  • Regmi, A.D., Devkota, K.C., Yoshida, K., Pradhan, B., Pourghasemi, H. R., Kumamoto, T., Akgun, A., 2014. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7(2), 725-742.
  • Sahin, E.K., Colkesen, I., Kavzoglu, T., 2018. A comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mapping. Geocarto International, 1-23.
  • Sezer, E.A., Nefeslioglu, H.A., Osna, T., 2017. An expert-based landslide susceptibility mapping (LSM) module developed for Netcad architect software. Computers & Geosciences, 98:26-37.
  • Van Westen, C.J., Rengers, N., Soeters, R., 2003. Use of geomorphological information in indirect landslide susceptibility assessment. Natural Hazards, 30(3):399-419.
  • Yalcin, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena, 72(1):1-12.
  • Yesilnacar, E., Topal, T., 2005. Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3-4):251-266.
  • Youssef, A. M., Pourghasemi, H.R., Pourtaghi, Z.S., Al-Katheeri, M. M., 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 13(5):839-856.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Ender Buğday 0000-0002-3054-1516

Publication Date December 21, 2019
Published in Issue Year 2019

Cite

APA Buğday, E. (2019). Landslide Susceptibility Mapping Using Different Modeling Approaches in Forested Areas (Sample of Çankırı-Yapraklı). European Journal of Forest Engineering, 5(2), 61-67. https://doi.org/10.33904/ejfe.582276

Creative Commons License

The works published in European Journal of Forest Engineering (EJFE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.