We developed an algorithm that was designed to create a spatial database of a forested transportation network using aerial LiDAR. The algorithm uses two main attributes, LiDAR intensity values and ground return density. The road extraction process was developed using aerial LiDAR from McDonald-Dunn Research Forest near Corvallis, Oregon, U.S.A. The road extraction process requires X, Y, Z coordinates, intensity values, canopy type, and the maximum road grade. To compare the results of the process, nine road segments were field surveyed with terrestrial LiDAR. The result of the road extraction process resulted in 80% true positives, 34% false positives, 20% false negatives, and 38% true negatives in identifying forest roads. The average absolute value difference in the road width between the two data sets were 1.1m, while the cut/fill slope differences were minimal (> 4%) and the difference in road cross slope was two percent. These results were comparable with other published studies that examined differences between LiDAR measurements and field measurements
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Research Articles |
Authors | |
Publication Date | June 1, 2015 |
Published in Issue | Year 2015 Volume: 1 Issue: 1 |
The works published in European Journal of Forest Engineering (EJFE) are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.