Research Article
BibTex RIS Cite

Design, synthesis and in-vitro COX inhibitory profiles of a new series of tetrazole-based hydrazones

Year 2022, , 20 - 27, 29.04.2022
https://doi.org/10.55971/EJLS.1095818

Abstract

Inhibition of cyclooxygenases (COXs), by selective and nonselective inhibitors, is a favorable approach for pharmacologic intervention in a variety of disorders such as cancer. For this purpose, a new class of tetrazole-hydrazone hybrids (1-12) was designed. A facile and efficient procedure was applied for the preparation of compounds 1-12, which were tested for their inhibitory activities towards cyclooxygenases (COXs) by means of an in vitro colorimetric method. The most potent and selective COX-1 inhibitors were determined as 2-[(1-methyl-1H-tetrazol-5-yl)thio]-N'-(4-(piperidin-1-yl)benzylidene)acetohydrazide (1) (40.88±2.79%) and 2-[(1-methyl-1H-tetrazol-5-yl)thio]-N'-(4-(morpholin-4-yl)benzylidene)acetohydrazide (2) (39.80±2.78%), whereas the most potent and selective COX-2 inhibitor was found as 2-[(1-phenyl-1H-tetrazol-5-yl)thio]-N'-(4-(pyrrolidin-1-yl)benzylidene)acetohydrazide (10) (42.38±1.16%). In general, 1-methyl-1H-tetrazole moiety resulted in selective COX-1 inhibition, whereas 1-phenyl-1H-tetrazole moiety gave rise to preferential COX-2 inhibition.

Supporting Institution

Anadolu University

Project Number

2005S019

References

  • 1. Rouzer CA, Marnett LJ. Structural and chemical biology of the interaction of cyclooxygenase with substrates and non-steroidal anti-inflammatory drugs. Chem Rev. (2020);120:7592-7641. https://dx.doi.org/10.1021/acs.chemrev.0c00215
  • 2. Brock TG, McNish RW, Peters-Golden M. Arachidonic acid is preferentially metabolized by cyclooxygenase-2 to prostacyclin and prostaglandin E2. J Biol Chem. (1999);274(17):11660-6. https://doi.org/10.1074/jbc.274.17.11660
  • 3. Mazaleuskaya, LL, Ricciotti E. Druggable prostanoid pathway. Adv Exp Med Biol. (2020);1274:29-54. https://doi.org/10.1007/978-3-030-50621-6_3
  • 4. Pannunzio A, Coluccia M. Cyclooxygenase-1 (COX-1) and COX-1 inhibitors in cancer: A review of oncology and medicinal chemistry literature. Pharmaceuticals (2018);11:101. https://doi.org/10.3390/ph11040101
  • 5. Sharma V, Bhatia P, Alam O, Javed Naim M, Nawaz F, Ahmad Sheikh A, Jha M. Recent advancement in the discovery and development of COX-2 inhibitors: Insight into biological activities and SAR studies (2008-2019). Bioorg Chem. (2019);89:103007. https://doi.org/10.1016/j.bioorg.2019.103007
  • 6. Zidar N, Odar K, Glavac D, Jerse M, Zupanc T, Stajer D. Cyclooxygenase in normal human tissues – is COX-1 really a constitutive isoform, and COX-2 an inducible isoform? J Cell Mol Med. (2009);13:3753-3763. https://doi.org/10.1111/j.1582-4934.2008.00430.x
  • 7. Yu T, Lao X, Zheng H. Influencing COX-2 activity by COX related pathways in inflammation and cancer. Mini Rev Med Chem. (2016);16:1230-1243. https://doi.org/10.2174/1389557516666160505115743
  • 8. Gandhi J, Khera L, Gaur N, Paul C, Kaul R. Role of modulator of inflammation cyclooxygenase-2 in gammaherpesvirus mediated tumorigenesis. Front Microbiol. (2017);8:538. https://doi.org/10.3389/fmicb.2017.00538
  • 9. Caiazzo E, Ialenti A, Cicala C. The relatively selective cyclooxygenase-2 inhibitor nimesulide: What's going on? Eur J Pharmacol. (2019);848:105-111. https://doi.org/10.1016/j.ejphar.2019.01.044
  • 10. Vitale P, Tacconelli S, Perrone MG, Malerba P, Simone L, Scilimati A, Lavecchia A, Dovizio M, Marcantoni E, Bruno A, Patrignani P. Synthesis, pharmacological characterization, and docking analysis of a novel family of diarylisoxazoles as highly selective cyclooxygenase-1 (COX-1) inhibitors. J Med Chem. (2013);56(11):4277-4299. https://doi.org/10.1021/jm301905a
  • 11. Perrone MG, Scilimati A, Simone L, Vitale P. Selective COX-1 inhibition: A therapeutic target to be reconsidered. Curr Med Chem. (2010);17(32):3769-805. https://doi.org/10.2174/092986710793205408
  • 12. Carullo G, Galligano F, Aiello F. Structure-activity relationships for the synthesis of selective cyclooxygenase 2 inhibitors: An overview (2009-2016). Medchemcomm. (2016);8(3):492-500. https://doi.org/10.1039/c6md00569a
  • 13. Kumar P, Narasimhan B. Hydrazides/hydrazones as antimicrobial and anticancer agents in the new millennium. Mini-Rev Med Chem. (2013);13:971-987. https://doi.org/10.2174/1389557511313070003
  • 14. Rollas S, Küçükgüzel SG. Biological activities of hydrazone derivatives. Molecules (2007);12(8):1910-1939. https://doi.org/10.3390/12081910
  • 15. Narang R, Narasimhan B, Sharma S. A review on biological activities and chemical synthesis of hydrazide derivatives. Curr Med Chem. 2012;19(4):569-612. https://10.2174/092986712798918789
  • 16. Mali SN, Thorat BR, Gupta DR, Pandey A. Mini-review of the importance of hydrazides and their derivatives—Synthesis and biological activity. Eng. Proc. (2021);11:21. https://doi.org/10.3390/ASEC2021-11157
  • 17. Ju Z, Su M, Hong J, La Kim E, Moon HR, Chung HY, Kim S, Jung JH. Design of balanced COX inhibitors based on anti-inflammatory and/or COX-2 inhibitory ascidian metabolites. Eur J Med Chem. (2019);180:86-98. https://doi.org/10.1016/j.ejmech.2019.07.016
  • 18. Abdelgawad MA, Labib MB, Abdel-Latif M. Pyrazole-hydrazone derivatives as anti-inflammatory agents: Design, synthesis, biological evaluation, COX-1,2/5-LOX inhibition and docking study. Bioorg Chem. (2017);74:212-220. http://dx.doi.org/10.1016/j.bioorg.2017.08.014
  • 19. Gorantla V, Gundla R, Jadav SS, Anugu SR, Chimakurthy J, Nidasanametla SK, Korupolu R. Molecular hybrid design, synthesis and biological evaluation of N-phenyl sulfonamide linked N-acyl hydrazone derivatives functioning as COX-2 inhibitors: new anti-inflammatory, anti-oxidant and anti-bacterial agents. New J Chem. (2017);41:13516-13532. https://doi.org/10.1039/c7nj03332j
  • 20. Mohammed KO, Nissan YM. Synthesis, molecular docking, and biological evaluation of some novel hydrazones and pyrazole derivatives as anti-inflammatory agents. Chem Biol Drug Des. (2014);84(4):473-488. https://doi.org/10.1111/cbdd.12336
  • 21. El-Sayed MA-A, Abdel-Aziz NI, Abdel-Aziz AA-M, El-Azab AS, Asiri YA, ElTahir KEH. Design, synthesis, and biological evaluation of substituted hydrazone and pyrazole derivatives as selective COX-2 inhibitors: Molecular docking study. Bioorg Med Chem. (2011);19:3416-3424. https://doi.org/10.1016/j.bmc.2011.04.027
  • 22. Xiong Q, Dong S, Chen Y, Liu X, Feng X. Asymmetric synthesis of tetrazole and dihydroisoquinoline derivatives by isocyanide-based multicomponent reactions. Nat Commun. (2019);10:2116. https://doi.org/10.1038/s41467-019-09904-5
  • 23. Lamie PF, Philoppes JN, Azouz AA, Safwat NM. Novel tetrazole and cyanamide derivatives as inhibitors of cyclooxygenase-2 enzyme: design, synthesis, anti-inflammatory evaluation, ulcerogenic liability and docking study. J Enzyme Inhib Med Chem. (2017);32:805-820. https://doi.org/10.1080/14756366.2017.1326110
  • 24. Labib MB, Fayez AM, El-Nahass ES, Awadallah M, Halim PA. Novel tetrazole-based selective COX-2 inhibitors: Design, synthesis, anti-inflammatory activity, evaluation of PGE2, TNF-α, IL-6 and histopathological study. Bioorg Chem. (2020);104:104308. https://doi.org/10.1016/j.bioorg.2020.104308
  • 25. Wei C-X, Bian M, Gong G-H. Tetrazolium compounds: synthesis and applications in medicine. Molecules (2015);20:5528-5553. https://doi.org/10.3390/molecules20045528
  • 26. Altıntop MD, Kaplancıklı ZA, Akalın Çiftçi G, Demirel R. Synthesis and biological evaluation of thiazoline derivatives as new antimicrobial and anticancer agents. Eur J Med Chem. (2014);74:264-277. https://doi.org/10.1016/j.ejmech.2013.12.060
  • 27. Altıntop MD, Özdemir A, Turan-Zitouni G, Ilgın S, Atlı Ö, İşcan G, Kaplancıklı ZA. Synthesis and biological evaluation of some hydrazone derivatives as new anticandidal and anticancer agents. Eur J Med Chem. (2012);58:299-307. https://doi.org/10.1016/j.ejmech.2012.10.011
Year 2022, , 20 - 27, 29.04.2022
https://doi.org/10.55971/EJLS.1095818

Abstract

Project Number

2005S019

References

  • 1. Rouzer CA, Marnett LJ. Structural and chemical biology of the interaction of cyclooxygenase with substrates and non-steroidal anti-inflammatory drugs. Chem Rev. (2020);120:7592-7641. https://dx.doi.org/10.1021/acs.chemrev.0c00215
  • 2. Brock TG, McNish RW, Peters-Golden M. Arachidonic acid is preferentially metabolized by cyclooxygenase-2 to prostacyclin and prostaglandin E2. J Biol Chem. (1999);274(17):11660-6. https://doi.org/10.1074/jbc.274.17.11660
  • 3. Mazaleuskaya, LL, Ricciotti E. Druggable prostanoid pathway. Adv Exp Med Biol. (2020);1274:29-54. https://doi.org/10.1007/978-3-030-50621-6_3
  • 4. Pannunzio A, Coluccia M. Cyclooxygenase-1 (COX-1) and COX-1 inhibitors in cancer: A review of oncology and medicinal chemistry literature. Pharmaceuticals (2018);11:101. https://doi.org/10.3390/ph11040101
  • 5. Sharma V, Bhatia P, Alam O, Javed Naim M, Nawaz F, Ahmad Sheikh A, Jha M. Recent advancement in the discovery and development of COX-2 inhibitors: Insight into biological activities and SAR studies (2008-2019). Bioorg Chem. (2019);89:103007. https://doi.org/10.1016/j.bioorg.2019.103007
  • 6. Zidar N, Odar K, Glavac D, Jerse M, Zupanc T, Stajer D. Cyclooxygenase in normal human tissues – is COX-1 really a constitutive isoform, and COX-2 an inducible isoform? J Cell Mol Med. (2009);13:3753-3763. https://doi.org/10.1111/j.1582-4934.2008.00430.x
  • 7. Yu T, Lao X, Zheng H. Influencing COX-2 activity by COX related pathways in inflammation and cancer. Mini Rev Med Chem. (2016);16:1230-1243. https://doi.org/10.2174/1389557516666160505115743
  • 8. Gandhi J, Khera L, Gaur N, Paul C, Kaul R. Role of modulator of inflammation cyclooxygenase-2 in gammaherpesvirus mediated tumorigenesis. Front Microbiol. (2017);8:538. https://doi.org/10.3389/fmicb.2017.00538
  • 9. Caiazzo E, Ialenti A, Cicala C. The relatively selective cyclooxygenase-2 inhibitor nimesulide: What's going on? Eur J Pharmacol. (2019);848:105-111. https://doi.org/10.1016/j.ejphar.2019.01.044
  • 10. Vitale P, Tacconelli S, Perrone MG, Malerba P, Simone L, Scilimati A, Lavecchia A, Dovizio M, Marcantoni E, Bruno A, Patrignani P. Synthesis, pharmacological characterization, and docking analysis of a novel family of diarylisoxazoles as highly selective cyclooxygenase-1 (COX-1) inhibitors. J Med Chem. (2013);56(11):4277-4299. https://doi.org/10.1021/jm301905a
  • 11. Perrone MG, Scilimati A, Simone L, Vitale P. Selective COX-1 inhibition: A therapeutic target to be reconsidered. Curr Med Chem. (2010);17(32):3769-805. https://doi.org/10.2174/092986710793205408
  • 12. Carullo G, Galligano F, Aiello F. Structure-activity relationships for the synthesis of selective cyclooxygenase 2 inhibitors: An overview (2009-2016). Medchemcomm. (2016);8(3):492-500. https://doi.org/10.1039/c6md00569a
  • 13. Kumar P, Narasimhan B. Hydrazides/hydrazones as antimicrobial and anticancer agents in the new millennium. Mini-Rev Med Chem. (2013);13:971-987. https://doi.org/10.2174/1389557511313070003
  • 14. Rollas S, Küçükgüzel SG. Biological activities of hydrazone derivatives. Molecules (2007);12(8):1910-1939. https://doi.org/10.3390/12081910
  • 15. Narang R, Narasimhan B, Sharma S. A review on biological activities and chemical synthesis of hydrazide derivatives. Curr Med Chem. 2012;19(4):569-612. https://10.2174/092986712798918789
  • 16. Mali SN, Thorat BR, Gupta DR, Pandey A. Mini-review of the importance of hydrazides and their derivatives—Synthesis and biological activity. Eng. Proc. (2021);11:21. https://doi.org/10.3390/ASEC2021-11157
  • 17. Ju Z, Su M, Hong J, La Kim E, Moon HR, Chung HY, Kim S, Jung JH. Design of balanced COX inhibitors based on anti-inflammatory and/or COX-2 inhibitory ascidian metabolites. Eur J Med Chem. (2019);180:86-98. https://doi.org/10.1016/j.ejmech.2019.07.016
  • 18. Abdelgawad MA, Labib MB, Abdel-Latif M. Pyrazole-hydrazone derivatives as anti-inflammatory agents: Design, synthesis, biological evaluation, COX-1,2/5-LOX inhibition and docking study. Bioorg Chem. (2017);74:212-220. http://dx.doi.org/10.1016/j.bioorg.2017.08.014
  • 19. Gorantla V, Gundla R, Jadav SS, Anugu SR, Chimakurthy J, Nidasanametla SK, Korupolu R. Molecular hybrid design, synthesis and biological evaluation of N-phenyl sulfonamide linked N-acyl hydrazone derivatives functioning as COX-2 inhibitors: new anti-inflammatory, anti-oxidant and anti-bacterial agents. New J Chem. (2017);41:13516-13532. https://doi.org/10.1039/c7nj03332j
  • 20. Mohammed KO, Nissan YM. Synthesis, molecular docking, and biological evaluation of some novel hydrazones and pyrazole derivatives as anti-inflammatory agents. Chem Biol Drug Des. (2014);84(4):473-488. https://doi.org/10.1111/cbdd.12336
  • 21. El-Sayed MA-A, Abdel-Aziz NI, Abdel-Aziz AA-M, El-Azab AS, Asiri YA, ElTahir KEH. Design, synthesis, and biological evaluation of substituted hydrazone and pyrazole derivatives as selective COX-2 inhibitors: Molecular docking study. Bioorg Med Chem. (2011);19:3416-3424. https://doi.org/10.1016/j.bmc.2011.04.027
  • 22. Xiong Q, Dong S, Chen Y, Liu X, Feng X. Asymmetric synthesis of tetrazole and dihydroisoquinoline derivatives by isocyanide-based multicomponent reactions. Nat Commun. (2019);10:2116. https://doi.org/10.1038/s41467-019-09904-5
  • 23. Lamie PF, Philoppes JN, Azouz AA, Safwat NM. Novel tetrazole and cyanamide derivatives as inhibitors of cyclooxygenase-2 enzyme: design, synthesis, anti-inflammatory evaluation, ulcerogenic liability and docking study. J Enzyme Inhib Med Chem. (2017);32:805-820. https://doi.org/10.1080/14756366.2017.1326110
  • 24. Labib MB, Fayez AM, El-Nahass ES, Awadallah M, Halim PA. Novel tetrazole-based selective COX-2 inhibitors: Design, synthesis, anti-inflammatory activity, evaluation of PGE2, TNF-α, IL-6 and histopathological study. Bioorg Chem. (2020);104:104308. https://doi.org/10.1016/j.bioorg.2020.104308
  • 25. Wei C-X, Bian M, Gong G-H. Tetrazolium compounds: synthesis and applications in medicine. Molecules (2015);20:5528-5553. https://doi.org/10.3390/molecules20045528
  • 26. Altıntop MD, Kaplancıklı ZA, Akalın Çiftçi G, Demirel R. Synthesis and biological evaluation of thiazoline derivatives as new antimicrobial and anticancer agents. Eur J Med Chem. (2014);74:264-277. https://doi.org/10.1016/j.ejmech.2013.12.060
  • 27. Altıntop MD, Özdemir A, Turan-Zitouni G, Ilgın S, Atlı Ö, İşcan G, Kaplancıklı ZA. Synthesis and biological evaluation of some hydrazone derivatives as new anticandidal and anticancer agents. Eur J Med Chem. (2012);58:299-307. https://doi.org/10.1016/j.ejmech.2012.10.011
There are 27 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Research Articles
Authors

Mehlika Dilek Altıntop 0000-0002-8159-663X

Belgin Sever 0000-0003-4847-9711

Halide Edip Temel 0000-0002-5233-1165

Zafer Asım Kaplancıklı 0000-0003-2252-0923

Ahmet Özdemir 0000-0003-0280-5550

Project Number 2005S019
Publication Date April 29, 2022
Submission Date March 30, 2022
Published in Issue Year 2022

Cite

Vancouver Altıntop MD, Sever B, Temel HE, Kaplancıklı ZA, Özdemir A. Design, synthesis and in-vitro COX inhibitory profiles of a new series of tetrazole-based hydrazones. Eur J Life Sci. 2022;1(1):20-7.