Research Article
BibTex RIS Cite

Novel pyridine-thiazole hybrid: synthesis, structural characterisation and adme predictions

Year 2025, Volume: 4 Issue: 1, 15 - 23, 30.04.2025
https://doi.org/10.55971/EJLS.1645175

Abstract

In this study, novel 4-(4-chlorophenyl)-N-phenyl-3-(pyridin-4-yl)thiazol-2(3H)-imine derivative (2) has been synthesized and the structure of the compound has been investigated by spectral analysis methods. By 1H-NMR and 13C-NMR spectral analysis, it was determined that the compound was obtained purely and its structure was elucidated. Further characterization of the compound 2D-NMR has been used to confirm the ring closure of the thiazole and the positions of the substituents linked carbon atoms. In silico studies have been completed via SwissADME and pkCSM pharmacokinetics software programs. The SwissADME software predicted that compound 2 could cross the blood-brain barrier (BBB) and also enter the gastrointestinal system. pkCSM pharmacokinetics studies indicated that compound 2 has no hepatotoxicity and also shows no skin irritation.

References

  • Gupta V, Kant V. A review on biological activity of imidazole and thiazole moieties and their derivatives. Science International. 2013;1(7):253-60. https://doi.org/10.17311/sciintl.2013.253.260
  • Kassem AF, Althomali RH, Anwar MM, El-Sofany WI. Thiazole moiety: A promising scaffold for anticancer drug discovery. Journal of Molecular Structure. 2024;1303:137510. https://doi.org/10.1016/j.molstruc.2024.137510
  • Kumari G, Dhillon S, Rani P, Chahal M, Aneja DK, Kinger M. Development in the synthesis of bioactive thiazole-based heterocyclic hybrids utilizing phenacyl bromide. ACS Omega. 2024;9(17):18709-46. https://doi.org/10.1021/acsomega.3c10299
  • Ashmawy FO, Gomha SM, Abdallah MA, Zaki MEA, Al-Hussain SA, El-Desouky MA. Synthesis, in vitro evaluation and molecular docking studies of novel thiophenyl thiazolyl-pyridine hybrids as potential anticancer agents. Molecules. 2023;28(11). https://doi.org/10.3390/molecules28114270
  • Chhabria MT, Patel S, Modi P, Brahmkshatriya PS. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives. Curr Top Med Chem. 2016;16(26):2841-62. https://doi.org/10.2174/1568026616666160506130731
  • Petrou A, Fesatidou M, Geronikaki A. Thiazole ring-a biologically active scaffold. Molecules. 2021;26(11). https://doi.org/10.3390/molecules26113166
  • Patil AR, Yallur BC, Chinnam S, Ananthnag GS, Santhosh CR, Pant G, et al. Pharmaceutical perspectives of thiazole analogues: An overview. Results in Chemistry. 2024;12:101820. https://doi.org/10.1016/j.rechem.2024.101820
  • Alamshany ZM, Nossier ES. New thiazole derivatives linked to pyridine, fused pyridine, pyrimidine and thiazolopyrimidine scaffolds with potential dual anticancer and antimicrobial activities: Design, synthesis and docking simulation. Journal of Molecular Structure. 2024;1316:138973. https://doi.org/10.1016/j.molstruc.2024.138973
  • Niu ZX, Wang YT, Zhang SN, Li Y, Chen XB, Wang SQ, et al. Application and synthesis of thiazole ring in clinically approved drugs. Eur J Med Chem. 2023;250:115172. https://doi.org/10.1016/j.ejmech.2023.115172
  • Ayati A, Emami S, Asadipour A, Shafiee A, Foroumadi A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur J Med Chem. 2015;97:699-718. https://doi.org/10.1016/j.ejmech.2015.04.015
  • Sharma PC, Bansal KK, Sharma A, Sharma D, Deep A. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur J Med Chem. 2020;188:112016. https://doi.org/10.1016/j.ejmech.2019.112016
  • Singh IP, Gupta S, Kumar S. Thiazole compounds as antiviral agents: An update. Med Chem. 2020;16(1):4-23. https://doi.org/10.2174/1573406415666190614101253
  • Helal MH, Salem MA, El-Gaby MS, Aljahdali M. Synthesis and biological evaluation of some novel thiazole compounds as potential anti-inflammatory agents. Eur J Med Chem. 2013;65:517-26. https://doi.org/10.1016/j.ejmech.2013.04.005
  • Duc DX, Chung NT. Recent Development in the Synthesis of Thiazoles. Curr Org Synth. 2022;19(6):702-30. https://doi.org/10.2174/1570179419666220216122637
  • Narasimhamurthy KH, Sajith AM, Joy MN, Rangappa KS. An overview of recent developments in the synthesis of substituted thiazoles. ChemistrySelect. 2020;5(19):5629-56. https://doi.org/10.1002/slct.202001133
  • Singh A, Malhotra D, Singh K, Chadha R, Bedi PMS. Thiazole derivatives in medicinal chemistry: Recent advancements in synthetic strategies, structure activity relationship and pharmacological outcomes. Journal of Molecular Structure. 2022;1266:133479. https://doi.org/10.1016/j.molstruc.2022.133479
  • Kassab AE, Shahin IG, Mohamed KO, Taher AT, Mayhoub AS. Recent advances in the synthesis of thiazole ring: Mini review. Mini-Reviews in Organic Chemistry. 2023;20(3):270-84. https://doi.org/10.2174/1570193x19666220413104255
  • Villa-Reyna AL, Perez-Velazquez M, Gonzalez-Felix ML, Galvez-Ruiz JC, Gonzalez-Mosquera DM, Valencia D, et al. The structure-antiproliferative activity relationship of pyridine derivatives. Int J Mol Sci. 2024;25(14). https://doi.org/10.3390/ijms25147640
  • Chemboli R, Kodali US, Taneja AK, Bandaru V, Mandava BT, Suryadevara V, et al. Sonochemical replacement of C-3 hydrogen of indole by a pyridine ring: Docking, synthesis and in vitro evaluation of 3-(6-aryl pyridin-2-yl)indoles against SIRT1. Journal of Molecular Structure. 2024;1298:137025. https://doi.org/10.1016/j.molstruc.2023.137025
  • Mohammad Abu-Taweel G, Ibrahim MM, Khan S, Al-Saidi HM, Alshamrani M, Alhumaydhi FA, et al. Medicinal importance and chemosensing applications of pyridine derivatives: A review. Crit Rev Anal Chem. 2024;54(3):599-616. https://doi.org/10.1080/10408347.2022.2089839
  • Elsayed MA, Elsayed AM, Sroor FM. Novel biologically active pyridine derivatives: Synthesis, structure characterization, in vitro antimicrobial evaluation and structure-activity relationship. Medicinal Chemistry Research. 2024;33(3):476-91. https://doi.org/10.1007/s00044-024-03188-1
  • Ling Y, Hao ZY, Liang D, Zhang CL, Liu YF, Wang Y. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des Devel Ther. 2021;15:4289-338. https://doi.org/10.2147/DDDT.S329547
  • Abd El-Lateef HM, Khalaf MM, Gouda M, Kandeel M, Amer AA, Abdelhamid AA, et al. Functionalized pyridines: Synthesis and toxicity evaluation of potential insecticidal agents against aphis craccivora. ACS Omega. 2023;8(32):29685-92. https://doi.org/10.1021/acsomega.3c03831
  • Failla M, Lombardo GW, Orlando P, Fiorito D, Bombonato E, Ronchi P, et al. Late‐stage functionalisation of pyridine‐containing bioactive molecules: Recent strategies and perspectives. European Journal of Organic Chemistry. 2023;26(16). https://doi.org/10.1002/ejoc.202300074
  • Guchhait SK, Hura N, Sinha K, Panda D. Pyridine C3-arylation of nicotinic acids accessible via a multicomponent reaction: An entry to all-substituted-3,4-diarylated pyridines. RSC Advances. 2017;7(14):8323-31. https://doi.org/10.1039/c6ra28299g
  • Amer AA, Abdelhamid AA, Elnakeeb AS, Salah HA. One‐pot multicomponent designing of novel 2‐imino‐4‐arylidene‐1,3‐thiazolidin‐4‐one. Journal of Heterocyclic Chemistry. 2022;60(3):489-96. https://doi.org/10.1002/jhet.4604
  • Bodhak C, Mandal S, Dey P, Mukherjee SK, Pramanik A. Efficient synthesis of functionalized 2-iminothiazolines by ultrasonication under solvent-free conditions and access to 5-aryl-2-iminothiazolines. Results in Chemistry. 2022;4:100301. https://doi.org/10.1016/j.rechem.2022.100301
  • Berber N, Şahutoğlu AS, Gökçe B, Çıkrıkçı K, Gençer N. Synthesis, characterization, carbonic anhydrase inhibitor activity, and docking studies of phenylthiazol-2(3h)-ylidene-isoquinoline-5-amine derivatives. Journal of Molecular Structure. 2023;1291:136061. https://doi.org/10.1016/j.molstruc.2023.136061
  • Turan-Zitouni G, Özdemir A, Kaplancıklı ZA. Synthesis and antiviral activity of some (3,4-diaryl-3h-thiazol-2-ylidene)pyrimidin-2-yl amine derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements. 2011;186(2):233-9. https://doi.org/10.1080/10426507.2010.494643
  • Haji Ali S, Osmaniye D, Saglik BN, Levent S, Ozkay Y, Kaplancikli ZA. Design, synthesis, investigation, and biological activity assessments of (4-substituted-phenyl)-n-(3-morpholinopropyl)-3-phenylthiazol-2(3h)-imine derivatives as antifungal agents. ACS Omega. 2024;9(38):39326-43. https://doi.org/10.1021/acsomega.3c07879
  • SwissADME SwissDrugDesign: Molecular Modelling Group of the University of Lausanne and the SIB Swiss Institute of Bioinformatics; [Available from: http://www.swissadme.ch/].
  • SwissTargetPrediction SwissDrugDesign: The Molecular Modelling Group of the University of Lausanne and the SIB Swiss Institute of Bioinformatics; [Available from: http://www.swisstargetprediction.ch/].
  • Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357-W64. https://doi.org/10.1093/nar/gkz382
  • pkCSM. Pharmacokinetic properties: Instituto Rene Rachou Fiocruz Mınas, The University of Melbourne, University of Cambridge; [Available from: https://biosig.lab.uq.edu.au/pkcsm/].

Year 2025, Volume: 4 Issue: 1, 15 - 23, 30.04.2025
https://doi.org/10.55971/EJLS.1645175

Abstract

References

  • Gupta V, Kant V. A review on biological activity of imidazole and thiazole moieties and their derivatives. Science International. 2013;1(7):253-60. https://doi.org/10.17311/sciintl.2013.253.260
  • Kassem AF, Althomali RH, Anwar MM, El-Sofany WI. Thiazole moiety: A promising scaffold for anticancer drug discovery. Journal of Molecular Structure. 2024;1303:137510. https://doi.org/10.1016/j.molstruc.2024.137510
  • Kumari G, Dhillon S, Rani P, Chahal M, Aneja DK, Kinger M. Development in the synthesis of bioactive thiazole-based heterocyclic hybrids utilizing phenacyl bromide. ACS Omega. 2024;9(17):18709-46. https://doi.org/10.1021/acsomega.3c10299
  • Ashmawy FO, Gomha SM, Abdallah MA, Zaki MEA, Al-Hussain SA, El-Desouky MA. Synthesis, in vitro evaluation and molecular docking studies of novel thiophenyl thiazolyl-pyridine hybrids as potential anticancer agents. Molecules. 2023;28(11). https://doi.org/10.3390/molecules28114270
  • Chhabria MT, Patel S, Modi P, Brahmkshatriya PS. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives. Curr Top Med Chem. 2016;16(26):2841-62. https://doi.org/10.2174/1568026616666160506130731
  • Petrou A, Fesatidou M, Geronikaki A. Thiazole ring-a biologically active scaffold. Molecules. 2021;26(11). https://doi.org/10.3390/molecules26113166
  • Patil AR, Yallur BC, Chinnam S, Ananthnag GS, Santhosh CR, Pant G, et al. Pharmaceutical perspectives of thiazole analogues: An overview. Results in Chemistry. 2024;12:101820. https://doi.org/10.1016/j.rechem.2024.101820
  • Alamshany ZM, Nossier ES. New thiazole derivatives linked to pyridine, fused pyridine, pyrimidine and thiazolopyrimidine scaffolds with potential dual anticancer and antimicrobial activities: Design, synthesis and docking simulation. Journal of Molecular Structure. 2024;1316:138973. https://doi.org/10.1016/j.molstruc.2024.138973
  • Niu ZX, Wang YT, Zhang SN, Li Y, Chen XB, Wang SQ, et al. Application and synthesis of thiazole ring in clinically approved drugs. Eur J Med Chem. 2023;250:115172. https://doi.org/10.1016/j.ejmech.2023.115172
  • Ayati A, Emami S, Asadipour A, Shafiee A, Foroumadi A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur J Med Chem. 2015;97:699-718. https://doi.org/10.1016/j.ejmech.2015.04.015
  • Sharma PC, Bansal KK, Sharma A, Sharma D, Deep A. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur J Med Chem. 2020;188:112016. https://doi.org/10.1016/j.ejmech.2019.112016
  • Singh IP, Gupta S, Kumar S. Thiazole compounds as antiviral agents: An update. Med Chem. 2020;16(1):4-23. https://doi.org/10.2174/1573406415666190614101253
  • Helal MH, Salem MA, El-Gaby MS, Aljahdali M. Synthesis and biological evaluation of some novel thiazole compounds as potential anti-inflammatory agents. Eur J Med Chem. 2013;65:517-26. https://doi.org/10.1016/j.ejmech.2013.04.005
  • Duc DX, Chung NT. Recent Development in the Synthesis of Thiazoles. Curr Org Synth. 2022;19(6):702-30. https://doi.org/10.2174/1570179419666220216122637
  • Narasimhamurthy KH, Sajith AM, Joy MN, Rangappa KS. An overview of recent developments in the synthesis of substituted thiazoles. ChemistrySelect. 2020;5(19):5629-56. https://doi.org/10.1002/slct.202001133
  • Singh A, Malhotra D, Singh K, Chadha R, Bedi PMS. Thiazole derivatives in medicinal chemistry: Recent advancements in synthetic strategies, structure activity relationship and pharmacological outcomes. Journal of Molecular Structure. 2022;1266:133479. https://doi.org/10.1016/j.molstruc.2022.133479
  • Kassab AE, Shahin IG, Mohamed KO, Taher AT, Mayhoub AS. Recent advances in the synthesis of thiazole ring: Mini review. Mini-Reviews in Organic Chemistry. 2023;20(3):270-84. https://doi.org/10.2174/1570193x19666220413104255
  • Villa-Reyna AL, Perez-Velazquez M, Gonzalez-Felix ML, Galvez-Ruiz JC, Gonzalez-Mosquera DM, Valencia D, et al. The structure-antiproliferative activity relationship of pyridine derivatives. Int J Mol Sci. 2024;25(14). https://doi.org/10.3390/ijms25147640
  • Chemboli R, Kodali US, Taneja AK, Bandaru V, Mandava BT, Suryadevara V, et al. Sonochemical replacement of C-3 hydrogen of indole by a pyridine ring: Docking, synthesis and in vitro evaluation of 3-(6-aryl pyridin-2-yl)indoles against SIRT1. Journal of Molecular Structure. 2024;1298:137025. https://doi.org/10.1016/j.molstruc.2023.137025
  • Mohammad Abu-Taweel G, Ibrahim MM, Khan S, Al-Saidi HM, Alshamrani M, Alhumaydhi FA, et al. Medicinal importance and chemosensing applications of pyridine derivatives: A review. Crit Rev Anal Chem. 2024;54(3):599-616. https://doi.org/10.1080/10408347.2022.2089839
  • Elsayed MA, Elsayed AM, Sroor FM. Novel biologically active pyridine derivatives: Synthesis, structure characterization, in vitro antimicrobial evaluation and structure-activity relationship. Medicinal Chemistry Research. 2024;33(3):476-91. https://doi.org/10.1007/s00044-024-03188-1
  • Ling Y, Hao ZY, Liang D, Zhang CL, Liu YF, Wang Y. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des Devel Ther. 2021;15:4289-338. https://doi.org/10.2147/DDDT.S329547
  • Abd El-Lateef HM, Khalaf MM, Gouda M, Kandeel M, Amer AA, Abdelhamid AA, et al. Functionalized pyridines: Synthesis and toxicity evaluation of potential insecticidal agents against aphis craccivora. ACS Omega. 2023;8(32):29685-92. https://doi.org/10.1021/acsomega.3c03831
  • Failla M, Lombardo GW, Orlando P, Fiorito D, Bombonato E, Ronchi P, et al. Late‐stage functionalisation of pyridine‐containing bioactive molecules: Recent strategies and perspectives. European Journal of Organic Chemistry. 2023;26(16). https://doi.org/10.1002/ejoc.202300074
  • Guchhait SK, Hura N, Sinha K, Panda D. Pyridine C3-arylation of nicotinic acids accessible via a multicomponent reaction: An entry to all-substituted-3,4-diarylated pyridines. RSC Advances. 2017;7(14):8323-31. https://doi.org/10.1039/c6ra28299g
  • Amer AA, Abdelhamid AA, Elnakeeb AS, Salah HA. One‐pot multicomponent designing of novel 2‐imino‐4‐arylidene‐1,3‐thiazolidin‐4‐one. Journal of Heterocyclic Chemistry. 2022;60(3):489-96. https://doi.org/10.1002/jhet.4604
  • Bodhak C, Mandal S, Dey P, Mukherjee SK, Pramanik A. Efficient synthesis of functionalized 2-iminothiazolines by ultrasonication under solvent-free conditions and access to 5-aryl-2-iminothiazolines. Results in Chemistry. 2022;4:100301. https://doi.org/10.1016/j.rechem.2022.100301
  • Berber N, Şahutoğlu AS, Gökçe B, Çıkrıkçı K, Gençer N. Synthesis, characterization, carbonic anhydrase inhibitor activity, and docking studies of phenylthiazol-2(3h)-ylidene-isoquinoline-5-amine derivatives. Journal of Molecular Structure. 2023;1291:136061. https://doi.org/10.1016/j.molstruc.2023.136061
  • Turan-Zitouni G, Özdemir A, Kaplancıklı ZA. Synthesis and antiviral activity of some (3,4-diaryl-3h-thiazol-2-ylidene)pyrimidin-2-yl amine derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements. 2011;186(2):233-9. https://doi.org/10.1080/10426507.2010.494643
  • Haji Ali S, Osmaniye D, Saglik BN, Levent S, Ozkay Y, Kaplancikli ZA. Design, synthesis, investigation, and biological activity assessments of (4-substituted-phenyl)-n-(3-morpholinopropyl)-3-phenylthiazol-2(3h)-imine derivatives as antifungal agents. ACS Omega. 2024;9(38):39326-43. https://doi.org/10.1021/acsomega.3c07879
  • SwissADME SwissDrugDesign: Molecular Modelling Group of the University of Lausanne and the SIB Swiss Institute of Bioinformatics; [Available from: http://www.swissadme.ch/].
  • SwissTargetPrediction SwissDrugDesign: The Molecular Modelling Group of the University of Lausanne and the SIB Swiss Institute of Bioinformatics; [Available from: http://www.swisstargetprediction.ch/].
  • Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357-W64. https://doi.org/10.1093/nar/gkz382
  • pkCSM. Pharmacokinetic properties: Instituto Rene Rachou Fiocruz Mınas, The University of Melbourne, University of Cambridge; [Available from: https://biosig.lab.uq.edu.au/pkcsm/].
There are 34 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Research Articles
Authors

Aybüke Züleyha Kaya 0009-0002-1614-2380

Leyla Yurttaş 0000-0002-0957-6044

Publication Date April 30, 2025
Submission Date February 24, 2025
Acceptance Date March 22, 2025
Published in Issue Year 2025 Volume: 4 Issue: 1

Cite

Vancouver Kaya AZ, Yurttaş L. Novel pyridine-thiazole hybrid: synthesis, structural characterisation and adme predictions. Eur J Life Sci. 2025;4(1):15-23.