Clinical Research
BibTex RIS Cite

Unilateral Redüksiyonsuz Disk Deplasmanı Olan Temporomandibular Eklemde Retrodiskal Dokuların Biyomekanik Stres Analizi: Bir Sonlu Elemanlar Çalışması

Year 2025, Volume: 4 Issue: 1, 1 - 6, 29.01.2025

Abstract

Amaç: Bu çalışmanın amacı, unilateral redüksiyonsuz disk deplasmanı (DDwoR) bulunan temporomandibular eklemlerde (TME) mandibular hareketler sırasında retrodiskal dokulardaki stres değişimlerini sonlu elemanlar analizi (FEA) kullanarak değerlendirmektir.

Gereç ve Yöntemler: Geometrik modeller, biri bilateral olarak normal disk pozisyonuna sahip, diğeri ise unilateral DDwoRlu iki hastanın BT (Bilgisayarlı Tomografi) tarama verileri kullanılarak oluşturulmuştur. DICOM dosyaları segmentlere ayrılmış, 3D modeller yeniden yapılandırılmış ve standart bir metodoloji izlenerek matematiksel modellere dönüştürülmüştür. İki model analiz edilmiştir: bilateral olarak normal disk pozisyonuna sahip kontrol modeli ve unilateral DDwoR modeli. Bu modellerde sol (normal) ve sağ (DDwoR) eklemler ayrı ayrı değerlendirilmiştir. Ağız açma ve kapama hareketleri simüle edilerek retrodiskal dokulardaki stres dağılımı analiz edilmiştir. Von Mises stres değerleri ölçülerek DDwoR tarafı ile sağlıklı taraf karşılaştırılmıştır.

Bulgular: Hem normal hem de DDwoR tarafları, sağlıklı kontrole kıyasla değişen stres paternleri göstermiştir. DDwoR tarafı, ağız açma sırasında üst bölgede artmış stres seviyeleri sergileyerek mekanik açıdan daha hassas olduğunu ortaya koymuştur. Normal taraf, DDwoR tarafına kıyasla daha az etkilenmiş olsa da özellikle ağız açma sırasında orta bölgede telafi edici stres artışları göstermiştir.

Sonuç: Bu bulgular, DDwoR varlığında özellikle retrodiskal dokuların üst bölgesinin mekanik strese karşı savunmasız olduğunu vurgulamaktadır. Çalışma, ilerleyici eklem hasarını önlemek için retrodiskal doku bütünlüğünün korunmasına yönelik klinik stratejilerin önemini ortaya koymaktadır.

Project Number

PYO.DIS.1904.20.003

References

  • 1. Odabaş B, Arslan SG. Temporomandibular eklem anatomisi ve rahatsızlıkları. Dicle Tıp Dergisi. 2008;35(1):77-85.
  • 2. Karakis D, Bagkur M, Toksoy B. Comparison of simultaneously recorded computerized occlusal analysis and surface electromyographic activity of masticatory muscles between patients with unilateral TMD. Int J Prosthodont. 2021;34(5):554-9.
  • 3. Okeson J. Management of Temporomandibular Disorders and Occlusion. New York State Dental Journal. 2003;69(7):61.
  • 4. Kuwahara T, Bessette RW, Maruyama T. Characteristic chewing parameters for specific types of temporomandibular joint internal derangements. CRANIO®. 1996;14(1):12-22.
  • 5. Willard VP, Arzi B, Athanasiou KA. The attachments of the temporomandibular joint disc: a biochemical and histological investigation. Archives of oral biology. 2012;57(6):599-606.
  • 6. Holmlund AB, Gynther GW, Reinholt FP. Disk derangement and inflammatory changes in the posterior disk attachment of the temporomandibular joint: a histologic study. Oral surgery, oral medicine, oral pathology. 1992;73(1):9-12.
  • 7. Isberg A, Isacsson G, Johansson A-S, Larson O. Hyperplastic soft-tissue formation in the temporomandibular joint associated with internal derangement: a radiographic and histologic study. Oral surgery, oral medicine, oral pathology. 1986;61(1):32-8.
  • 8. Harorlı A, Akgül M, Yılmaz B, Bilge O, Dağistan S, Çakur B, et al. Ağız, Diş ve Çene Radyolojisi. 1. baskı İstanbul; Nobel Tıp Kitapevleri Tic. Ltd Şti. 2014:484-500.
  • 9. Beek M, Koolstra J, Van Ruijven L, Van Eijden T. Three-dimensional finite element analysis of the human temporomandibular joint disc. Journal of biomechanics. 2000;33(3):307-16.
  • 10. Gurbanov V, Bas B, Öz AA. Evaluation of stresses on temporomandibular joint in the use of class II and III orthodontic elastics: a three-dimensional finite element study. Journal of Oral and Maxillofacial Surgery. 2020;78(5):705-16.
  • 11. Rozylo-Kalinowska I, Orhan K. Imaging of the temporomandibular joint. 2019.
  • 12. Arnett G, Milam S, Gottesman L. Progressive mandibular retrusion—idiopathic condylar resorption. Part I. American Journal of Orthodontics and Dentofacial Orthopedics. 1996;110(1):8-15.
  • 13. Tanaka E, Del Pozo R, Tanaka M, Asai D, Hirose M, Iwabe T, Tanne K. Three-dimensional finite element analysis of human temporomandibular joint with and without disc displacement during jaw opening. Medical engineering & physics. 2004;26(6):503-11.
  • 14. Hattori-Hara E, Mitsui SN, Mori H, Arafurue K, Kawaoka T, Ueda K, et al. The influence of unilateral disc displacement on stress in the contralateral joint with a normally positioned disc in a human temporomandibular joint: An analytic approach using the finite element method. Journal of Cranio-Maxillofacial Surgery. 2014;42(8):2018-24.
  • 15. Tanaka E, Rodrigo D, Miyawaki Y, Lee K, Yamaguchi K, Tanne K. Stress distribution in the temporomandibular joint affected by anterior disc displacement: a three-dimensional analytic approach with the finite-element method. Journal of oral rehabilitation. 2000;27(9):754-9.
  • 16. Kakimoto N, Wongratwanich P, Shimamoto H, Kitisubkanchana J, Tsujimoto T, Shimabukuro K, et al. Comparison of T2 values of the displaced unilateral disc and retrodiscal tissue of temporomandibular joints and their implications. Scientific Reports. 2024;14(1):1705.

Biomechanical Stress Analysis in Retrodiscal Tissues of Temporomandibular Joint with Unilateral Disc Displacement Without Reduction: A Finite Element Study

Year 2025, Volume: 4 Issue: 1, 1 - 6, 29.01.2025

Abstract

Objective: This study aimed to evaluate stress changes in retrodiscal tissues during mandibular movements in temporomandibular joints (TMJ) with unilateral disc displacement without reduction (DDwoR) using finite element analysis (FEA).
Materials and Methods: Geometric models were created using CT scan data from two patients: one with bilaterally normal disc positioning and another with DDwoR. DICOM files were segmented, and 3D models were reconstructed and converted into mathematical models following a standardized methodology. Two models were analyzed: a control model with bilaterally normal discs and a DDwoR model, with separate evaluations of the left (normal) and right (DDwoR) joints. TMJ movements during mouth opening and closing were simulated, and stress distribution patterns in the retrodiscal tissues were analyzed. Von Mises stress values were measured and compared between the DDwoR and healthy sides.
Results: Both the normal and DDwoR sides demonstrated altered stress patterns compared to the healthy control. The DDwoR side consistently exhibited elevated stress in the superior region during mouth opening, underscoring its mechanical vulnerability. The normal side, while less affected than the DDwoR side, displayed compensatory stress increases, particularly in the intermediate region during mouth opening.
Conclusion: These findings underscore the vulnerability of the retrodiscal tissues, especially the superior region, to mechanical stress in the presence of DDwoR. This study highlights the importance of clinical strategies aimed at preserving retrodiscal tissue integrity to prevent progressive joint damage.

Project Number

PYO.DIS.1904.20.003

References

  • 1. Odabaş B, Arslan SG. Temporomandibular eklem anatomisi ve rahatsızlıkları. Dicle Tıp Dergisi. 2008;35(1):77-85.
  • 2. Karakis D, Bagkur M, Toksoy B. Comparison of simultaneously recorded computerized occlusal analysis and surface electromyographic activity of masticatory muscles between patients with unilateral TMD. Int J Prosthodont. 2021;34(5):554-9.
  • 3. Okeson J. Management of Temporomandibular Disorders and Occlusion. New York State Dental Journal. 2003;69(7):61.
  • 4. Kuwahara T, Bessette RW, Maruyama T. Characteristic chewing parameters for specific types of temporomandibular joint internal derangements. CRANIO®. 1996;14(1):12-22.
  • 5. Willard VP, Arzi B, Athanasiou KA. The attachments of the temporomandibular joint disc: a biochemical and histological investigation. Archives of oral biology. 2012;57(6):599-606.
  • 6. Holmlund AB, Gynther GW, Reinholt FP. Disk derangement and inflammatory changes in the posterior disk attachment of the temporomandibular joint: a histologic study. Oral surgery, oral medicine, oral pathology. 1992;73(1):9-12.
  • 7. Isberg A, Isacsson G, Johansson A-S, Larson O. Hyperplastic soft-tissue formation in the temporomandibular joint associated with internal derangement: a radiographic and histologic study. Oral surgery, oral medicine, oral pathology. 1986;61(1):32-8.
  • 8. Harorlı A, Akgül M, Yılmaz B, Bilge O, Dağistan S, Çakur B, et al. Ağız, Diş ve Çene Radyolojisi. 1. baskı İstanbul; Nobel Tıp Kitapevleri Tic. Ltd Şti. 2014:484-500.
  • 9. Beek M, Koolstra J, Van Ruijven L, Van Eijden T. Three-dimensional finite element analysis of the human temporomandibular joint disc. Journal of biomechanics. 2000;33(3):307-16.
  • 10. Gurbanov V, Bas B, Öz AA. Evaluation of stresses on temporomandibular joint in the use of class II and III orthodontic elastics: a three-dimensional finite element study. Journal of Oral and Maxillofacial Surgery. 2020;78(5):705-16.
  • 11. Rozylo-Kalinowska I, Orhan K. Imaging of the temporomandibular joint. 2019.
  • 12. Arnett G, Milam S, Gottesman L. Progressive mandibular retrusion—idiopathic condylar resorption. Part I. American Journal of Orthodontics and Dentofacial Orthopedics. 1996;110(1):8-15.
  • 13. Tanaka E, Del Pozo R, Tanaka M, Asai D, Hirose M, Iwabe T, Tanne K. Three-dimensional finite element analysis of human temporomandibular joint with and without disc displacement during jaw opening. Medical engineering & physics. 2004;26(6):503-11.
  • 14. Hattori-Hara E, Mitsui SN, Mori H, Arafurue K, Kawaoka T, Ueda K, et al. The influence of unilateral disc displacement on stress in the contralateral joint with a normally positioned disc in a human temporomandibular joint: An analytic approach using the finite element method. Journal of Cranio-Maxillofacial Surgery. 2014;42(8):2018-24.
  • 15. Tanaka E, Rodrigo D, Miyawaki Y, Lee K, Yamaguchi K, Tanne K. Stress distribution in the temporomandibular joint affected by anterior disc displacement: a three-dimensional analytic approach with the finite-element method. Journal of oral rehabilitation. 2000;27(9):754-9.
  • 16. Kakimoto N, Wongratwanich P, Shimamoto H, Kitisubkanchana J, Tsujimoto T, Shimabukuro K, et al. Comparison of T2 values of the displaced unilateral disc and retrodiscal tissue of temporomandibular joints and their implications. Scientific Reports. 2024;14(1):1705.
There are 16 citations in total.

Details

Primary Language English
Subjects Surgery (Other)
Journal Section Research Articles
Authors

Malik Shirinov 0000-0001-8775-8858

Emine Asena Singer 0000-0001-5205-1203

Burcu Baş Akkor 0000-0003-0593-3400

Project Number PYO.DIS.1904.20.003
Early Pub Date January 29, 2025
Publication Date January 29, 2025
Submission Date January 4, 2025
Acceptance Date January 17, 2025
Published in Issue Year 2025 Volume: 4 Issue: 1

Cite

Vancouver Shirinov M, Singer EA, Baş Akkor B. Biomechanical Stress Analysis in Retrodiscal Tissues of Temporomandibular Joint with Unilateral Disc Displacement Without Reduction: A Finite Element Study. EJOMS. 2025;4(1):1-6.

Creative Common Attribution Licence, EJOMS Licence © 2024 by Association of Oral and Maxillofacial Surgery Society is licensed under

Attribution-NonCommercial-NoDerivatives 4.0 International