Araştırma Makalesi
BibTex RIS Kaynak Göster

Mn-MCM-41 Türü Katalizörler ile Model Atıksulardan Fenol Giderimi

Yıl 2021, , 1113 - 1120, 31.12.2021
https://doi.org/10.31590/ejosat.1045523

Öz

Bu çalışma kapsamında farklı Mn/Si molar oranlarında, Mn katkılı MCM-41 katalizörleri sentezlenmiş ve katalizörlerin karakterizasyonu, XRD, BET, SEM, EDS ve parçacık boyut analizi metotları kullanılarak yapılmıştır. Katalizörlerin aktiviteleri, hidrojen peroksit katkılı yaş katalitik oksidasyon ile model atık sulardan fenol giderimi tepkimesinde test edilmiştir. XRD ve BET sonuçları, saf silikat formdaki MCM-41 destek malzemesinin istenilen altıgen gözenekli yapıda olduğunu, manganez metali eklendiğinde ise kristal yapının bozularak amorf yapıya dönüştüğünü, gözeneklerin kısmen bloke olması nedeniyle de BET yüzey alanlarının önemli ölçüde azaldığını göstermiştir. Fenol giderim reaksiyonları, laboratuar ortamında hazırlanan 50 ppm’lik fenol çözeltisi kullanılarak, 25,40 ve 60oC’de, 6,0 olarak ölçülen başlangıç pH’sında ve kesikli reaktörde yürütülmüştür. Deney sonuçları, optimum metal yüklemesinin Mn/Si molar oranı 0,06 olduğunda gerçekleştiğini göstermiştir. Reaksiyon bulguları incelendiğinde, sıcaklıkla birlikte fenol gideriminin arttığı görülmüştür. Buna ek olarak, atmosferik basınç ve çalışılan farklı sıcaklıklarda, katalizör yapısına metal eklenmesiyle birlikte fenol gideriminin, saf silika yapısındaki MCM-41’e oranla, Mn-MCM-41 katalizörleri için, %4.6-%14.4 aralığında arttığı görülmüştür. Optimum reaksiyon koşulları, atmosferik basınç, 60oC, 0,06 Mn/Si molar oranı olarak tespit edilmiş ve bu koşullarda %56 fenol giderimi elde edilmiştir. Ilımlı tepkime koşullarında (60oC ve atmosferik basınç), az miktarda metal ve az miktarda katalizör kullanarak (Mn/Si molar oranı 0,060, katalizör miktarı1,0 g/L), Mn-MCM-41 katalizörleri ile orta derece konsantre model atıksulardan optimum %56 fenol giderimi elde edilmesinin literatüre önemli bir katkı sağlayacağı düşünülmektedir.

Destekleyen Kurum

Anadolu Üniversitesi

Proje Numarası

BAP 1003F97 ve BAP 1106F120

Teşekkür

Bu çalışma, Anadolu Üniversitesi Bilimsel Araştırma Projeleri Kapsamında, BAP 1003F97 ve BAP 1106F120 No’lu Projeleri ile desteklenmiştir.

Kaynakça

  • Ganbold, B. (2005). Aktif karbon ve iyon değiştiriciler kullanılarak sudan fenol giderilmesi (Yayımlanmamış Yüksek Lisans Tezi). Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü. http://dspace.yildiz.edu.tr/xmlui/handle/1/5076.
  • Adar, E., Atay, P. N., Büncü, K., & Bilgili, M. S. (2020). Phenol removal from synthetic wastewater with powdered activated carbon: Isotherms, kinetics and thermodynamics. Environmental Research and Technology, 3(1). https://doi.org/10.35208/ert.692302.
  • Singh, A. (2013). Assessment of Bioremediation of oil and phenol contents in refinery waste water via bacterial consortium. Journal of Petroleum & Environmental Biotechnology, 04(03). https://doi.org/10.4172/2157-7463.1000145.
  • Babich, H., & Davis, D. (1981). Phenol: A review of environmental and health risks. Regulatory Toxicology and Pharmacology, 1(1), 90–109. https://doi.org/10.1016/0273-2300(81)90071-4.
  • Arpe, H.-J. (2007). Industrielle organische chemie: bedeutende vor- und zwischenprodukte, sechste, vollständig überarbeitete auflage. WILEY-VCH.
  • Abdollahi, M., & Hassani, S. (2014). Phenol. In M. Derakhshani & P. Wexler (Eds.), Encyclopedia of Toxicology (3rd ed., pp. 871–873). Academic Press.
  • Exon, J. H. (1984). A review of chlorinated phenols. Veterinary and Human Toxicology, 26(6), 508–520.
  • Veeresh, G. S., Kumar, P., & Mehrotra, I. (2005). Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review. Water Research, 39(1), 154–170. https://doi.org/10.1016/j.watres.2004.07.028.
  • Jadhav, D. N., & Vanjara, A. K. (2004). Removal of phenol from wastewater using sawdust, polymerized sawdust and sawdust carbon. Indian Journal of Chemical Technology, 11(1), 35–41.
  • Parsons, W. A. (1965). Chemical treatment of sewage and industrial wastes. National Lime Association.
  • Saravanan, P., Pakshirajan, K., & Saha, P. (2008). Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor. Bioresource Technology, 99(1), 205–209. https://doi.org/10.1016/j.biortech.2006.11.045.
  • Patterson, J. W. (1975). Wastewater treatment technology (1st ed.). Ann Arbor Science.
  • Gomes, H., Selvam, P., Dapurkar, S., Figueiredo, J., & Faria, J. (2005). Transition metal (Cu, Cr, and V) modified MCM-41 for the catalytic wet air oxidation of aniline. Microporous and Mesoporous Materials, 86(1–3), 287–294. https://doi.org/10.1016/j.micromeso.2005.07.022.
  • Wu, Q., Hu, X., Yue, P. L., Zhao, X. S., & Lu, G. Q. (2001). Copper/MCM-41 as catalyst for the wet oxidation of phenol. Applied Catalysis B: Environmental, 32(3), 151–156. https://doi.org/10.1016/s0926-3373(01)00131-x.
  • Gomes, H., Selvam, P., Dapurkar, S., Figueiredo, J., & Faria, J. (2005). Transition metal (Cu, Cr, and V) modified MCM-41 for the catalytic wet air oxidation of aniline. Microporous and Mesoporous Materials, 86(1–3), 287–294. https://doi.org/10.1016/j.micromeso.2005.07.022.
  • Verweij, H. J. (2003). Ceramic membranes: morphology and transport. Journal of Materials Science, 38, 4677–4695.
  • Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. M., Pernicone, N., Ramsay, J. D. F., Sing, K. S. W., & Unger, K. K. (1994). Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry, 66(8), 1739–1758. https://doi.org/10.1351/pac199466081739.
  • Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710–712. https://doi.org/10.1038/359710a0.
  • Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., & Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834–10843. https://doi.org/10.1021/ja00053a020.
  • Yang, X., Zhang, S., Qiu, Z., Tian, G., Feng, Y., & Xiao, F. S. (2004). Stable Ordered Mesoporous Silica Materials Templated by High-Temperature Stable Surfactant Micelle in Alkaline Media. The Journal of Physical Chemistry B, 108(15), 4696–4700. https://doi.org/10.1021/jp0380226.
  • Jiang, T., Shen, W., Tang, Y., Zhao, Q., Li, M., & Yin, H. (2008). Stability and characterization of mesoporous molecular sieve using natural clay as a raw material obtained by microwave irradiation. Applied Surface Science, 254(15), 4797–4802. https://doi.org/10.1016/j.apsusc.2008.01.138.
  • Alothman, Z. A., & Apblett, A. W. (2010a). Metal ion adsorption using polyamine-functionalized mesoporous materials prepared from bromopropyl-functionalized mesoporous silica. Journal of Hazardous Materials, 182(1–3), 581–590. https://doi.org/10.1016/j.jhazmat.2010.06.072.
  • Vallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporous materials for drug delivery. Angewandte Chemie (Internation Ed. in English), 46(40), 7548–7558. https://doi.org/10.1002/anie.200604488.
  • Zhang, Q., Wang, Y., Ohishi, Y., Shishido, T., & Takehira, K. (2001). Vanadium-Containing MCM-41 for Partial Oxidation of Lower Alkanes. Journal of Catalysis, 202(2), 308–318. https://doi.org/10.1006/jcat.2001.3276.
  • Büchel, G., Grün, M., Unger, K. K., Matsumoto, A., & Kazuo, T. (1998). Tailored syntheses of nanostructured silicas: Control of particle morphology, particle size and pore size. Supramolecular Science, 5(3–4), 253–259. https://doi.org/10.1016/s0968-5677(98)00016-9.
  • Shao, Y., Wang, X., Kang, Y., Shu, Y., Sun, Q., & Li, L. (2014). Application of Mn/MCM-41 as an adsorbent to remove methyl blue from aqueous solution. Journal of Colloid Interface Science, 429, 25–33. https://doi.org/10.1016/j.jcis.2014.05.004.
  • AlOthman, Z., & Apblett, A. W. (2009). Synthesis of mesoporous silica grafted with 3-glycidoxypropyltrimethoxy–silane. Materials Letters, 63(27), 2331–2334. https://doi.org/10.1016/j.matlet.2009.07.067.
  • Grün, M., Lauer, I., & Unger, K. K. (1997). The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Advanced Materials, 9(3), 254–257. https://doi.org/10.1002/adma.19970090317.
  • Unger, K., Kumar, D., Grün, M., Büchel, G., Lüdtke, S., Adam, T., Schumacher, K., & Renker, S. (2000). Synthesis of spherical porous silicas in the micron and submicron size range: challenges and opportunities for miniaturized high-resolution chromatographic and electrokinetic separations. Journal of Chromatography A, 892(1–2), 47–55. https://doi.org/10.1016/s0021-9673(00)00177-1.
  • Lin, C.-C., Lin, L.-M., Chang, C.-T., Chiou, C.-S., & Ma, C. M. (2010, July). Study on the Conversion of Methane into CO2 and Performance Assessment with Mesoporous Catalyst at Low Temperature. 103 rd A&WMA’s Annual Conference and Exhibition, Alberta, Canada.
  • Rakitskaya, T., Truba, A., Dzhyga, G., Nagaevs’ka, A., & Volkova, V. (2018). Water Vapor Adsorption by Some Manganese Oxide Forms. Colloids and Interfaces, 2(4), 61. https://doi.org/10.3390/colloids2040061.
  • Mangrulkar, P. A., Kamble, S. P., Meshram, J., & Rayalu, S. S. (2008). Adsorption of phenol and o-chlorophenol by mesoporous MCM-41. Journal of Hazardous Materials, 160(2–3), 414–421. https://doi.org/10.1016/j.jhazmat.2008.03.013.
  • Akti, F., & Balci, S. (2019). Structural Variations in SBA-15 by Copper Incorporation and a Test in Catalytic Wet Peroxide Oxidation of Phenol. Structural Variations in SBA-15 by Copper Incorporation and a Test in Catalytic Wet Peroxide Oxidation of Phenol, 31, 91–102.
  • Britto, J. M., Oliveira, S. B. D., Rabelo, D., & Rangel, M. D. C. (2008). Catalytic wet peroxide oxidation of phenol from industrial wastewater on activated carbon. Catalysis Today, 133–135, 582–587. https://doi.org/10.1016/j.cattod.2007.12.112.

Phenol Removal From Model Waste Waters by Mn-MCM-41 Type Catalysts

Yıl 2021, , 1113 - 1120, 31.12.2021
https://doi.org/10.31590/ejosat.1045523

Öz

In this study, Mn-incorporated MCM-41 catalysts with different Mn/Si molar ratios were synthesised and the characterisation of the catalysts was carried out by using XRD, BET, SEM, EDS and particle size analysis methods. The activities of the catalysts were tested in the phenol removal reaction from model solutions using the wet catalytic oxidation with hydrogen peroxide. XRD and BET results showed that the MCM-41 support material in the pure silicate form had the desired hexagonal porous structure but upon addition of the manganese metal, the crystal structure deteriorated becoming amorphous and the surface areas reduced significantly due to the partial blocking of the pores. Phenol removal reactions were carried out using a 50 ppm phenol solution prepared in the laboratory at 25,40 and 60oC, at an initial pH value of 6.0 in a batch reactor. The experimental results depicted that the optimum metal loading occurred at a Mn/Si molar ratio of 0.06. Investigation of the reaction results showed that phenol removal increased with temperature. In addition, at atmospheric pressure and at the studied different temperatures, with the addition of the metal to the MCM-41 structure, the phenol removal percentage increased in the range of 4.6%-14.4% for Mn-MCM-41 catalysts, compared to the purely siliceous MCM-41. Optimum reaction conditions were determined as 60oC, atmospheric pressure, 0.06 Mn/Si molar ratio, and 56% phenol removal was obtained under these conditions. Obtaining an optimum 56% phenol removal from moderately concentrated model waste waters with Mn-MCM-41 catalysts by using a small amount of metal and small amount of catalyst (Mn/Si molar ratio 0.060, catalyst amount 1.0 g/L) under moderate reaction conditions (60oC and atmospheric pressure), is thought to make an important contribution to the literature.

Proje Numarası

BAP 1003F97 ve BAP 1106F120

Kaynakça

  • Ganbold, B. (2005). Aktif karbon ve iyon değiştiriciler kullanılarak sudan fenol giderilmesi (Yayımlanmamış Yüksek Lisans Tezi). Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü. http://dspace.yildiz.edu.tr/xmlui/handle/1/5076.
  • Adar, E., Atay, P. N., Büncü, K., & Bilgili, M. S. (2020). Phenol removal from synthetic wastewater with powdered activated carbon: Isotherms, kinetics and thermodynamics. Environmental Research and Technology, 3(1). https://doi.org/10.35208/ert.692302.
  • Singh, A. (2013). Assessment of Bioremediation of oil and phenol contents in refinery waste water via bacterial consortium. Journal of Petroleum & Environmental Biotechnology, 04(03). https://doi.org/10.4172/2157-7463.1000145.
  • Babich, H., & Davis, D. (1981). Phenol: A review of environmental and health risks. Regulatory Toxicology and Pharmacology, 1(1), 90–109. https://doi.org/10.1016/0273-2300(81)90071-4.
  • Arpe, H.-J. (2007). Industrielle organische chemie: bedeutende vor- und zwischenprodukte, sechste, vollständig überarbeitete auflage. WILEY-VCH.
  • Abdollahi, M., & Hassani, S. (2014). Phenol. In M. Derakhshani & P. Wexler (Eds.), Encyclopedia of Toxicology (3rd ed., pp. 871–873). Academic Press.
  • Exon, J. H. (1984). A review of chlorinated phenols. Veterinary and Human Toxicology, 26(6), 508–520.
  • Veeresh, G. S., Kumar, P., & Mehrotra, I. (2005). Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review. Water Research, 39(1), 154–170. https://doi.org/10.1016/j.watres.2004.07.028.
  • Jadhav, D. N., & Vanjara, A. K. (2004). Removal of phenol from wastewater using sawdust, polymerized sawdust and sawdust carbon. Indian Journal of Chemical Technology, 11(1), 35–41.
  • Parsons, W. A. (1965). Chemical treatment of sewage and industrial wastes. National Lime Association.
  • Saravanan, P., Pakshirajan, K., & Saha, P. (2008). Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor. Bioresource Technology, 99(1), 205–209. https://doi.org/10.1016/j.biortech.2006.11.045.
  • Patterson, J. W. (1975). Wastewater treatment technology (1st ed.). Ann Arbor Science.
  • Gomes, H., Selvam, P., Dapurkar, S., Figueiredo, J., & Faria, J. (2005). Transition metal (Cu, Cr, and V) modified MCM-41 for the catalytic wet air oxidation of aniline. Microporous and Mesoporous Materials, 86(1–3), 287–294. https://doi.org/10.1016/j.micromeso.2005.07.022.
  • Wu, Q., Hu, X., Yue, P. L., Zhao, X. S., & Lu, G. Q. (2001). Copper/MCM-41 as catalyst for the wet oxidation of phenol. Applied Catalysis B: Environmental, 32(3), 151–156. https://doi.org/10.1016/s0926-3373(01)00131-x.
  • Gomes, H., Selvam, P., Dapurkar, S., Figueiredo, J., & Faria, J. (2005). Transition metal (Cu, Cr, and V) modified MCM-41 for the catalytic wet air oxidation of aniline. Microporous and Mesoporous Materials, 86(1–3), 287–294. https://doi.org/10.1016/j.micromeso.2005.07.022.
  • Verweij, H. J. (2003). Ceramic membranes: morphology and transport. Journal of Materials Science, 38, 4677–4695.
  • Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. M., Pernicone, N., Ramsay, J. D. F., Sing, K. S. W., & Unger, K. K. (1994). Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry, 66(8), 1739–1758. https://doi.org/10.1351/pac199466081739.
  • Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710–712. https://doi.org/10.1038/359710a0.
  • Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., & Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834–10843. https://doi.org/10.1021/ja00053a020.
  • Yang, X., Zhang, S., Qiu, Z., Tian, G., Feng, Y., & Xiao, F. S. (2004). Stable Ordered Mesoporous Silica Materials Templated by High-Temperature Stable Surfactant Micelle in Alkaline Media. The Journal of Physical Chemistry B, 108(15), 4696–4700. https://doi.org/10.1021/jp0380226.
  • Jiang, T., Shen, W., Tang, Y., Zhao, Q., Li, M., & Yin, H. (2008). Stability and characterization of mesoporous molecular sieve using natural clay as a raw material obtained by microwave irradiation. Applied Surface Science, 254(15), 4797–4802. https://doi.org/10.1016/j.apsusc.2008.01.138.
  • Alothman, Z. A., & Apblett, A. W. (2010a). Metal ion adsorption using polyamine-functionalized mesoporous materials prepared from bromopropyl-functionalized mesoporous silica. Journal of Hazardous Materials, 182(1–3), 581–590. https://doi.org/10.1016/j.jhazmat.2010.06.072.
  • Vallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporous materials for drug delivery. Angewandte Chemie (Internation Ed. in English), 46(40), 7548–7558. https://doi.org/10.1002/anie.200604488.
  • Zhang, Q., Wang, Y., Ohishi, Y., Shishido, T., & Takehira, K. (2001). Vanadium-Containing MCM-41 for Partial Oxidation of Lower Alkanes. Journal of Catalysis, 202(2), 308–318. https://doi.org/10.1006/jcat.2001.3276.
  • Büchel, G., Grün, M., Unger, K. K., Matsumoto, A., & Kazuo, T. (1998). Tailored syntheses of nanostructured silicas: Control of particle morphology, particle size and pore size. Supramolecular Science, 5(3–4), 253–259. https://doi.org/10.1016/s0968-5677(98)00016-9.
  • Shao, Y., Wang, X., Kang, Y., Shu, Y., Sun, Q., & Li, L. (2014). Application of Mn/MCM-41 as an adsorbent to remove methyl blue from aqueous solution. Journal of Colloid Interface Science, 429, 25–33. https://doi.org/10.1016/j.jcis.2014.05.004.
  • AlOthman, Z., & Apblett, A. W. (2009). Synthesis of mesoporous silica grafted with 3-glycidoxypropyltrimethoxy–silane. Materials Letters, 63(27), 2331–2334. https://doi.org/10.1016/j.matlet.2009.07.067.
  • Grün, M., Lauer, I., & Unger, K. K. (1997). The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Advanced Materials, 9(3), 254–257. https://doi.org/10.1002/adma.19970090317.
  • Unger, K., Kumar, D., Grün, M., Büchel, G., Lüdtke, S., Adam, T., Schumacher, K., & Renker, S. (2000). Synthesis of spherical porous silicas in the micron and submicron size range: challenges and opportunities for miniaturized high-resolution chromatographic and electrokinetic separations. Journal of Chromatography A, 892(1–2), 47–55. https://doi.org/10.1016/s0021-9673(00)00177-1.
  • Lin, C.-C., Lin, L.-M., Chang, C.-T., Chiou, C.-S., & Ma, C. M. (2010, July). Study on the Conversion of Methane into CO2 and Performance Assessment with Mesoporous Catalyst at Low Temperature. 103 rd A&WMA’s Annual Conference and Exhibition, Alberta, Canada.
  • Rakitskaya, T., Truba, A., Dzhyga, G., Nagaevs’ka, A., & Volkova, V. (2018). Water Vapor Adsorption by Some Manganese Oxide Forms. Colloids and Interfaces, 2(4), 61. https://doi.org/10.3390/colloids2040061.
  • Mangrulkar, P. A., Kamble, S. P., Meshram, J., & Rayalu, S. S. (2008). Adsorption of phenol and o-chlorophenol by mesoporous MCM-41. Journal of Hazardous Materials, 160(2–3), 414–421. https://doi.org/10.1016/j.jhazmat.2008.03.013.
  • Akti, F., & Balci, S. (2019). Structural Variations in SBA-15 by Copper Incorporation and a Test in Catalytic Wet Peroxide Oxidation of Phenol. Structural Variations in SBA-15 by Copper Incorporation and a Test in Catalytic Wet Peroxide Oxidation of Phenol, 31, 91–102.
  • Britto, J. M., Oliveira, S. B. D., Rabelo, D., & Rangel, M. D. C. (2008). Catalytic wet peroxide oxidation of phenol from industrial wastewater on activated carbon. Catalysis Today, 133–135, 582–587. https://doi.org/10.1016/j.cattod.2007.12.112.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Yeşim Güçbilmez 0000-0003-1430-6484

Proje Numarası BAP 1003F97 ve BAP 1106F120
Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Güçbilmez, Y. (2021). Mn-MCM-41 Türü Katalizörler ile Model Atıksulardan Fenol Giderimi. Avrupa Bilim Ve Teknoloji Dergisi(32), 1113-1120. https://doi.org/10.31590/ejosat.1045523