Nano Titanyum Dioksit Eşliğinde Doğal Organik Maddenin Katalitik Ozonlanması
Yıl 2021,
Sayı: 27, 82 - 88, 30.11.2021
Alper Alver
,
Emine Baştürk
Öz
Önemli bir bileşeni hümik asitler (HA) olan sulardaki doğal ornaik maddeler (DOM) uğradıkları fiziksel, kimyasal ve biyolojik değişimler sonucunda arıtma tesislerinde çeşitli problemlere sebep olmaktadırlar. Konvansiyonel arıtım prosesleri bu bileşiklerin giderimde yetersiz kaldıkları için ileri arıtım prosesleri ile giderimleri hedeflenmektedir. Son yıllarda en dikkat çekici yöntemlerden biri de katalitik ozonlama prosesleridir. Bu çalışmada HA’nın ozonlama ile oksidasyonunda katalizör olarak nano boyutlu TiO2 (nano-TiO2) kullanılmıştır. Katalizörün ozonlama prosesine katkısını belirlemek amacıyla gerçekleştirilen tekil ozonlama, tekil adsorpsiyon ve katalitik ozonlama deneylerinde organik madde konsantrasyonu ve fraksiyonlarındaki değişim çözünmüş organik karbon (ÇOK), UV254 ve UV272 parametreleri üzerinden takip edilmiştir. UV indekslerinin organik maddenin dezenfeksiyon yan ürünü oluşturma potansiyelinin bir göstergesi olduğu da bilinmektedir. Deneyler sonucunda, organik madde alifatik ve aromatik yapısını bozundurmada katalitik ozonlama prosesinin %95 üzerinde bir başarım ve %87 üzerinde ÇOK giderimi sağladığı görülmüştür. Tekil ozonlamanın ve tekil adsorpsiyonun ise HA yapısını bozundurmada kısıtlı kaldığı görülmüştür. Yalancı 1. Derece reaksiyon kinetikleri kıyaslandığında nano-TiO2/O3 (0,4780 1/dk), tekil ozonlamadan (0,1773 1/dk) neredeyse üç kat, tekil adsorpsiyondan (0,1047 1/dk) neredeyse beş kat daha hızlı gerçekleştiği görülmüştür. Katalitik ozonlama proseslerinin doğal organik madde gideriminde oldukça etkin olduğu ve nano-TiO2 katalizörünün serbest radikal oluşturmada başarılı olduğu sonucuna varılmıştır.
Teşekkür
Aksaray Üniversitesi Çevre Mühendisliği Bölümü'ne bu yayının oluşturulmasında verdiği destekler için teşekkür ederiz.
Kaynakça
- Alver, A. (2019). Evaluation of conventional drinking water treatment plant efficiency according to water quality index and health risk assessment. Environmental Science and Pollution Research, 26(26), 27225-27238.
- Alver, A., Basturk, E. (2019). Removal of aspartame by catalytic ozonation with nano-TiO2 coated pumice. Desalination and Water Treatment, 152, 268-275.
- Alver, A., Baştürk, E., Kılıç, A. (2021). Development of adaptive neuro-fuzzy inference system model for predict trihalomethane formation potential in distribution network simulation test. Environmental Science and Pollution Research, 28(13), 15870-15882.
- Alver, A., Kılıç, A. (2018). Catalytic ozonation by iron coated pumice for the degradation of natural organic matters. Catalysts, 8(5), 219.
- Alver, A., Kılıç, A. (2021). Katalitik Ozonlanmanın Doğal Organik Maddenin Yapısına ve Trihalometan Oluşturma Potansiyeline Etkisi. Avrupa Bilim ve Teknoloji Dergisi(23), 601-607.
- Alver, A., TAĞAÇ, A. A., KILIÇ, A. (2020). Gümüş nanopartiküller eşliğinde katalitik ozonlama prosesleri ile sucul ortamdan doğal organik maddelerin giderimi: Ozonlama ürünlerinin belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1285-1296.
- Argun, M. E., Alver, A., Karatas, M. (2017). Optimization of landfill leachate oxidation at extreme conditions and determination of micropollutants removal. Desalination and Water Treatment, 90, 130-138.
- Faria, P., Monteiro, D., Órfão, J., Pereira, M. (2009). Cerium, manganese and cobalt oxides as catalysts for the ozonation of selected organic compounds. Chemosphere, 74(6), 818-824.
- Grasso, D., Chin, Y.-p., Weber Jr, W. J. (1990). Structural and behavioral characteristics of a commercial humic acid and natural dissolved aquatic organic matter. Chemosphere, 21(10-11), 1181-1197.
- Guo, Y., Zhu, S., Wang, B., Huang, J., Deng, S., Yu, G., Wang, Y. (2019). Modelling of emerging contaminant removal during heterogeneous catalytic ozonation using chemical kinetic approaches. Journal of Hazardous Materials, 380, 120888.
- Ikhlaq, A., Brown, D. R., Kasprzyk-Hordern, B. (2015). Catalytic ozonation for the removal of organic contaminants in water on alumina. Applied Catalysis B: Environmental, 165, 408-418.
- International, A. (2004). Annual book of ASTM standards. ASTM International.
- Kim, J. K., Alajmy, J., Borges, A. C., Joo, J. C., Ahn, H., Campos, L. C. (2013). Degradation of humic acid by photocatalytic reaction using nano-sized ZnO/laponite composite (NZLC). Water, Air, & Soil Pollution, 224(11), 1-10.
- Kulovaara, M., Corin, N., Backlund, P., Tervo, J. (1996). Impact of UV254-radiation on aquatic humic substances. Chemosphere, 33(5), 783-790.
- Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24, 1-39.
- Leitner, N. K. V., Fu, H. (2005). pH effects on catalytic ozonation of carboxylic acids with metal on metal oxides catalysts. Topics in catalysis, 33(1-4), 249-256.
- Li, H., Xu, B., Qi, F., Sun, D., Chen, Z. (2014). Degradation of bezafibrate in wastewater by catalytic ozonation with cobalt doped red mud: efficiency, intermediates and toxicity. Applied Catalysis B: Environmental, 152, 342-351.
- Li, W.-T., Jin, J., Li, Q., Wu, C.-F., Lu, H., Zhou, Q., Li, A.-M. (2016). Developing LED UV fluorescence sensors for online monitoring DOM and predicting DBPs formation potential during water treatment. Water research, 93, 1-9.
- Mathon, B., Coquery, M., Liu, Z., Penru, Y., Guillon, A., Esperanza, M., Miège, C., Choubert, J.-M. (2021). Ozonation of 47 organic micropollutants in secondary treated municipal effluents: Direct and indirect kinetic reaction rates and modelling. Chemosphere, 262, 127969.
- Miao, H., Tao, W. (2008). Ozonation of humic acid in water. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 83(3), 336-344.
- Rucka, K., Solipiwko-Pieścik, A., Wolska, M. (2019). Effectiveness of humic substance removal during the coagulation process. SN Applied Sciences, 1(6), 535.
- Salla, J. S., Padoin, N., Amorim, S. M., Puma, G. L., Moreira, R. F. (2020). Humic acids adsorption and decomposition on Mn2O3 and α-Al2O3 nanoparticles in aqueous suspensions in the presence of ozone. Journal of environmental chemical engineering, 8(2), 102780.
- Simonin, J.-P. (2016). On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300, 254-263.
- Thurman, E. M. (2012). Organic geochemistry of natural waters (Vol. 2). Springer Science & Business Media.
- Von Sonntag, C., Von Gunten, U. (2012). Chemistry of ozone in water and wastewater treatment. IWA publishing.
- Wang, Y., Xie, Y., Sun, H., Xiao, J., Cao, H., Wang, S. (2016). Efficient catalytic ozonation over reduced graphene oxide for p-hydroxylbenzoic acid (PHBA) destruction: active site and mechanism. ACS applied materials & interfaces, 8(15), 9710-9720.
- Waterson, E. J., Canuel, E. A. (2008). Sources of sedimentary organic matter in the Mississippi River and adjacent Gulf of Mexico as revealed by lipid biomarker and δ13CTOC analyses. Organic Geochemistry, 39(4), 422-439.
Weber, J., Chen, Y., Jamroz, E., Miano, T. (2018). Preface: humic substances in the environment. Journal of Soils and Sediments, 18(8), 2665-2667.
- Wolska, M., Mołczan, M., Urbańska-Kozłowska, H., Solipiwko-Pieścik, A. (2018). Optimizing coagulant choice for treatment technology of surface water for human consumption. Environment Protection Engineering, 44(4).
- Xu, B., Qi, F., Sun, D., Chen, Z., Robert, D. (2016). Cerium doped red mud catalytic ozonation for bezafibrate degradation in wastewater: Efficiency, intermediates, and toxicity. Chemosphere, 146, 22-31.
- Zhang, J., Lee, K.-H., Cui, L., Jeong, T.-s. (2009). Degradation of methylene blue in aqueous solution by ozone-based processes. Journal of Industrial and Engineering Chemistry, 15(2), 185-189.
- Zhao, H., Dong, Y., Jiang, P., Wang, G., Zhang, J., Li, K., Feng, C. (2014). An α-MnO 2 nanotube used as a novel catalyst in ozonation: performance and the mechanism. New Journal of Chemistry, 38(4), 1743-1750.
Catalytic Ozonation of Natural Organic Matter via Nano Titanium Dioxide
Yıl 2021,
Sayı: 27, 82 - 88, 30.11.2021
Alper Alver
,
Emine Baştürk
Öz
Natural organic substances (NOM) in water, an important component of which is humic acids (HA), cause various problems in treatment plants as a result of the physical, chemical and biological changes they undergo. Since conventional treatment processes are insufficient for the removal of these compounds, it is aimed to be removed by advanced treatment processes. One of the most striking methods in recent years is catalytic ozonation processes (cOP). In this study, nano-sized TiO2 (nano-TiO2) was used as a catalyst in the oxidation of HA by ozonation. In the single ozonation, single adsorption and catalytic ozonation experiments performed to determine the contribution of the catalyst to the ozonation process, the change in organic matter concentration and fractions was followed by the dissolved organic carbon (DOC), UV254 and UV272 parameters. It is also known that UV indexes are an indicator of the formation potential of disinfection by-product form organic matter. As a result of the experiments, it was observed that the catalytic ozonation process achieved a performance above 95% and a DOC removal over 87% in degrading the aliphatic and aromatic structure of organic matter. It has been observed that single ozonation and single adsorption are limited in degrading the HA structure. Comparing pseudo-first order reaction kinetics nano-TiO2/O3 (0.4780 l/min) is almost three times faster than single ozonation (0.1773 l/min) and almost five times faster than single adsorption (0.1047 l/min) It has been observed to occur. It was concluded that catalytic ozonation processes are highly effective in NOM removal and nano-TiO2 catalyst is successful in generating free radicals.
Kaynakça
- Alver, A. (2019). Evaluation of conventional drinking water treatment plant efficiency according to water quality index and health risk assessment. Environmental Science and Pollution Research, 26(26), 27225-27238.
- Alver, A., Basturk, E. (2019). Removal of aspartame by catalytic ozonation with nano-TiO2 coated pumice. Desalination and Water Treatment, 152, 268-275.
- Alver, A., Baştürk, E., Kılıç, A. (2021). Development of adaptive neuro-fuzzy inference system model for predict trihalomethane formation potential in distribution network simulation test. Environmental Science and Pollution Research, 28(13), 15870-15882.
- Alver, A., Kılıç, A. (2018). Catalytic ozonation by iron coated pumice for the degradation of natural organic matters. Catalysts, 8(5), 219.
- Alver, A., Kılıç, A. (2021). Katalitik Ozonlanmanın Doğal Organik Maddenin Yapısına ve Trihalometan Oluşturma Potansiyeline Etkisi. Avrupa Bilim ve Teknoloji Dergisi(23), 601-607.
- Alver, A., TAĞAÇ, A. A., KILIÇ, A. (2020). Gümüş nanopartiküller eşliğinde katalitik ozonlama prosesleri ile sucul ortamdan doğal organik maddelerin giderimi: Ozonlama ürünlerinin belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1285-1296.
- Argun, M. E., Alver, A., Karatas, M. (2017). Optimization of landfill leachate oxidation at extreme conditions and determination of micropollutants removal. Desalination and Water Treatment, 90, 130-138.
- Faria, P., Monteiro, D., Órfão, J., Pereira, M. (2009). Cerium, manganese and cobalt oxides as catalysts for the ozonation of selected organic compounds. Chemosphere, 74(6), 818-824.
- Grasso, D., Chin, Y.-p., Weber Jr, W. J. (1990). Structural and behavioral characteristics of a commercial humic acid and natural dissolved aquatic organic matter. Chemosphere, 21(10-11), 1181-1197.
- Guo, Y., Zhu, S., Wang, B., Huang, J., Deng, S., Yu, G., Wang, Y. (2019). Modelling of emerging contaminant removal during heterogeneous catalytic ozonation using chemical kinetic approaches. Journal of Hazardous Materials, 380, 120888.
- Ikhlaq, A., Brown, D. R., Kasprzyk-Hordern, B. (2015). Catalytic ozonation for the removal of organic contaminants in water on alumina. Applied Catalysis B: Environmental, 165, 408-418.
- International, A. (2004). Annual book of ASTM standards. ASTM International.
- Kim, J. K., Alajmy, J., Borges, A. C., Joo, J. C., Ahn, H., Campos, L. C. (2013). Degradation of humic acid by photocatalytic reaction using nano-sized ZnO/laponite composite (NZLC). Water, Air, & Soil Pollution, 224(11), 1-10.
- Kulovaara, M., Corin, N., Backlund, P., Tervo, J. (1996). Impact of UV254-radiation on aquatic humic substances. Chemosphere, 33(5), 783-790.
- Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24, 1-39.
- Leitner, N. K. V., Fu, H. (2005). pH effects on catalytic ozonation of carboxylic acids with metal on metal oxides catalysts. Topics in catalysis, 33(1-4), 249-256.
- Li, H., Xu, B., Qi, F., Sun, D., Chen, Z. (2014). Degradation of bezafibrate in wastewater by catalytic ozonation with cobalt doped red mud: efficiency, intermediates and toxicity. Applied Catalysis B: Environmental, 152, 342-351.
- Li, W.-T., Jin, J., Li, Q., Wu, C.-F., Lu, H., Zhou, Q., Li, A.-M. (2016). Developing LED UV fluorescence sensors for online monitoring DOM and predicting DBPs formation potential during water treatment. Water research, 93, 1-9.
- Mathon, B., Coquery, M., Liu, Z., Penru, Y., Guillon, A., Esperanza, M., Miège, C., Choubert, J.-M. (2021). Ozonation of 47 organic micropollutants in secondary treated municipal effluents: Direct and indirect kinetic reaction rates and modelling. Chemosphere, 262, 127969.
- Miao, H., Tao, W. (2008). Ozonation of humic acid in water. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 83(3), 336-344.
- Rucka, K., Solipiwko-Pieścik, A., Wolska, M. (2019). Effectiveness of humic substance removal during the coagulation process. SN Applied Sciences, 1(6), 535.
- Salla, J. S., Padoin, N., Amorim, S. M., Puma, G. L., Moreira, R. F. (2020). Humic acids adsorption and decomposition on Mn2O3 and α-Al2O3 nanoparticles in aqueous suspensions in the presence of ozone. Journal of environmental chemical engineering, 8(2), 102780.
- Simonin, J.-P. (2016). On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300, 254-263.
- Thurman, E. M. (2012). Organic geochemistry of natural waters (Vol. 2). Springer Science & Business Media.
- Von Sonntag, C., Von Gunten, U. (2012). Chemistry of ozone in water and wastewater treatment. IWA publishing.
- Wang, Y., Xie, Y., Sun, H., Xiao, J., Cao, H., Wang, S. (2016). Efficient catalytic ozonation over reduced graphene oxide for p-hydroxylbenzoic acid (PHBA) destruction: active site and mechanism. ACS applied materials & interfaces, 8(15), 9710-9720.
- Waterson, E. J., Canuel, E. A. (2008). Sources of sedimentary organic matter in the Mississippi River and adjacent Gulf of Mexico as revealed by lipid biomarker and δ13CTOC analyses. Organic Geochemistry, 39(4), 422-439.
Weber, J., Chen, Y., Jamroz, E., Miano, T. (2018). Preface: humic substances in the environment. Journal of Soils and Sediments, 18(8), 2665-2667.
- Wolska, M., Mołczan, M., Urbańska-Kozłowska, H., Solipiwko-Pieścik, A. (2018). Optimizing coagulant choice for treatment technology of surface water for human consumption. Environment Protection Engineering, 44(4).
- Xu, B., Qi, F., Sun, D., Chen, Z., Robert, D. (2016). Cerium doped red mud catalytic ozonation for bezafibrate degradation in wastewater: Efficiency, intermediates, and toxicity. Chemosphere, 146, 22-31.
- Zhang, J., Lee, K.-H., Cui, L., Jeong, T.-s. (2009). Degradation of methylene blue in aqueous solution by ozone-based processes. Journal of Industrial and Engineering Chemistry, 15(2), 185-189.
- Zhao, H., Dong, Y., Jiang, P., Wang, G., Zhang, J., Li, K., Feng, C. (2014). An α-MnO 2 nanotube used as a novel catalyst in ozonation: performance and the mechanism. New Journal of Chemistry, 38(4), 1743-1750.