Review
BibTex RIS Cite

A REVİEW: MORPHOLOGICAL, PHYSIOLOGICAL AND MOLECULAR RESPONSES OF SWEETPOTATO TO DROUGHT

Year 2021, Volume: 2 Issue: 2, 43 - 53, 06.12.2021

Abstract

Sweetpotato is a drought resilient crop that is nutritionally important for the economic uplifting of humans. Sweetpotato has high beta-carotene contents and low glycaemic index that are important sources of vision improvement. It regulates blood sugar level and insulin resistance in diabetic patients, serves a homeostatic property, and maintains healthy blood pressure. The storage roots and the leaves have anti-cancer agents, purifies the liver, and reduce the risk of obesity, diabetes, heart disease, prevents constipation and malnourishment in children, and promotes fertility in women due to its high contents of fibre, irons, and phytochemicals. Sweet potato has high yielding capacity per square meter than other root and tuber crops and played a vital role in famine-relief. The agronomic and nutritional versatility of sweet potato makes it very important food security crop. However, abiotic stress such as drought stress mitigate against the biological and potential yield realization of the crop. This article reviews the effect of drought on the yield and yield traits of sweet potato and the morphological, physiological and the molecular response to the crop to drought effect. Drought impedes photosynthetic activities and disturb the metabolic processes of sweet potato plant causing imbalance in photosynthesis, respiration, translocation, stomatal movement, light absorption, and ion uptake. The economic storage root yield is reduced, increase the number of deformed storage root, reduction in the canopy cover, leaf area index, decrease in the stem length among others. These morphological and physiological effects of drought trigger the generation of reactive oxygen species which generate signal transduction as a mechanism to protect the plant. The detrimental effects of the ROS are buffered, minimised, and scavenged by enzymatic and non-enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferases (GST), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and dehydro-ascorbate reductase (DHAR) as a defence mechanism to keep the ROS under tight control. In resistant breeding, knowledge of these mechanisms is vital for building resistance and tolerance in sweet potato and other crops to improve yield and yield quality and ensure crop sustainability and food security. The levels of the antioxidants should serve as a guide for agronomists and breeders in selecting and recommending cultivars for drought endemic areas for yield sustainability and food security purposes. In selecting crossing parents for drought tolerance, cultivars with high antioxidants should be used to increase the chance of drought tolerance and eliminate the episode of crop failure due to drought stress.

References

  • I. Sugri, B. K. Maalekuu, E. Gaveh, and F. Kusi, ‘Sweet Potato Value Chain Analysis Reveals Opportunities for Increased Income and Food Security in Northern Ghana’, Advances in Agriculture, vol. 2017, pp. 1–14, 2017, doi: 10.1155/2017/8767340.
  • S. Neela and S. W. Fanta, ‘Review on nutritional composition of orange‐fleshed sweet potato and its role in management of vitamin A deficiency’, Food Sci Nutr, vol. 7, no. 6, pp. 1920–1945, Jun. 2019, doi: 10.1002/fsn3.1063.
  • P. J. O’Brien, ‘The Sweet Potato: Its Origin and Dispersal’, American Anthropologist, vol. 74, no. 3, pp. 342–365, Jun. 1972, doi: 10.1525/aa.1972.74.3.02a00070.
  • T. Robertson, A. Alzaabi, M. Robertson, and B. Fielding, ‘Starchy Carbohydrates in a Healthy Diet: The Role of the Humble Potato’, Nutrients, vol. 10, no. 11, p. 1764, Nov. 2018, doi: 10.3390/nu10111764.
  • M. Baba, A. Nasiru, I. Saleh Kark, I. Rakson Muh, and N. Bello Rano, ‘Nutritional Evaluation of Sweet Potato Vines from Twelve Cultivars as Feed for Ruminant Animals’, Asian J. of Animal and Veterinary Advances, vol. 13, no. 1, pp. 25–29, Dec. 2017, doi: 10.3923/ajava.2018.25.29.
  • J. W. Anderson et al., ‘Health benefits of dietary fiber’, Nutrition Reviews, vol. 67, no. 4, pp. 188–205, Apr. 2009, doi: 10.1111/j.1753-4887.2009.00189.x.
  • J. L. Slavin and B. Lloyd, ‘Health Benefits of Fruits and Vegetables’, Advances in Nutrition, vol. 3, no. 4, pp. 506–516, Jul. 2012, doi: 10.3945/an.112.002154.
  • K. Glato et al., ‘Structure of sweet potato (Ipomoea batatas) diversity in West Africa covaries with a climatic gradient’, PLoS ONE, vol. 12, no. 5, p. e0177697, May 2017, doi: 10.1371/journal.pone.0177697.
  • Zuo et al., ‘Inflammaging and Oxidative Stress in Human Diseases: From Molecular Mechanisms to Novel Treatments’, IJMS, vol. 20, no. 18, p. 4472, Sep. 2019, doi: 10.3390/ijms20184472.
  • E. B. Kurutas, ‘The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state’, Nutr J, vol. 15, no. 1, p. 71, Dec. 2015, doi: 10.1186/s12937-016-0186-5.
  • B. Dereje, A. Girma, D. Mamo, and T. Chalchisa, ‘Functional properties of sweet potato flour and its role in product development: a review’, International Journal of Food Properties, vol. 23, no. 1, pp. 1639–1662, Jan. 2020, doi: 10.1080/10942912.2020.1818776.
  • M. Nedunchezhiyan, G. Byju, and R. C. Ray, ‘Effect of Tillage, Irrigation, and Nutrient Levels on Growth and Yield of Sweet Potato in Rice Fallow’, ISRN Agronomy, vol. 2012, pp. 1–13, Dec. 2012, doi: 10.5402/2012/291285.
  • A. Chandrasekara and T. Josheph Kumar, ‘Roots and Tuber Crops as Functional Foods: A Review on Phytochemical Constituents and Their Potential Health Benefits’, International Journal of Food Science, vol. 2016, pp. 1–15, 2016, doi: 10.1155/2016/3631647.
  • E. Gasura, F. Matsaure, P. S. Setimela, J. T. Rugare, C. S. Nyakurwa, and M. Andrade, ‘Performance, Variance Components, and Acceptability of Pro-vitamin A-Biofortified Sweetpotato in Southern Africa and Implications in Future Breeding’, Front. Plant Sci., vol. 12, p. 696738, Sep. 2021, doi: 10.3389/fpls.2021.696738.
  • M. Peña-Gallardo, S. M. Vicente-Serrano, F. Domínguez-Castro, and S. Beguería, ‘The impact of drought on the productivity of two rainfed crops in Spain’, Nat. Hazards Earth Syst. Sci., vol. 19, no. 6, pp. 1215–1234, Jun. 2019, doi: 10.5194/nhess-19-1215-2019.
  • R. L. Ray, A. Fares, and E. Risch, ‘Effects of Drought on Crop Production and Cropping Areas in Texas’, Agric. environ. lett., vol. 3, no. 1, p. 170037, Jan. 2018, doi: 10.2134/ael2017.11.0037.
  • Low J. et al., ‘Sweet potato development and delivery in sub-Saharan Africa’, AJFAND, vol. 17, no. 02, pp. 11955–11972, Apr. 2017, doi: 10.18697/ajfand.78.HarvestPlus07.
  • J. W. Low, R. Ortiz, E. Vandamme, M. Andrade, B. Biazin, and W. J. Grüneberg, ‘Nutrient-Dense Orange-Fleshed Sweetpotato: Advances in Drought-Tolerance Breeding and Understanding of Management Practices for Sustainable Next-Generation Cropping Systems in Sub-Saharan Africa’, Front. Sustain. Food Syst., vol. 4, p. 50, May 2020, doi: 10.3389/fsufs.2020.00050.
  • S. Fan, Z. Yuan, L. Feng, X. Wang, X. Ding, and H. Zhen, ‘Effects of drought stress on physiological and biochemical parameters of Dahlia pinnata’, The Journal of Applied Ecology, vol. 22, no. 3, pp. 651–657, 2011.
  • Y. Fang and L. Xiong, ‘General mechanisms of drought response and their application in drought resistance improvement in plants’, Cell. Mol. Life Sci., vol. 72, no. 4, pp. 673–689, Feb. 2015, doi: 10.1007/s00018-014-1767-0.
  • K. Razi and S. Muneer, ‘Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops’, Critical Reviews in Biotechnology, vol. 41, no. 5, pp. 669–691, Jul. 2021, doi: 10.1080/07388551.2021.1874280.
  • S. Fahad et al., ‘Crop Production under Drought and Heat Stress: Plant Responses and Management Options’, Front. Plant Sci., vol. 8, p. 1147, Jun. 2017, doi: 10.3389/fpls.2017.01147.
  • A. Raza et al., ‘Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review’, Plants, vol. 8, no. 2, p. 34, Jan. 2019, doi: 10.3390/plants8020034.
  • S. Yadav, P. Modi, A. Dave, A. Vijapura, D. Patel, and M. Patel, ‘Effect of Abiotic Stress on Crops’, in Sustainable Crop Production, M. Hasanuzzaman, M. Carvalho Minhoto Teixeira Filho, M. Fujita, and T. Assis Rodrigues Nogueira, Eds. IntechOpen, 2020. doi: 10.5772/intechopen.88434.
  • A. Sallam, A. M. Alqudah, M. F. A. Dawood, P. S. Baenziger, and A. Börner, ‘Drought Stress Tolerance in Wheat and Barley: Advances in Physiology, Breeding and Genetics Research’, IJMS, vol. 20, no. 13, p. 3137, Jun. 2019, doi: 10.3390/ijms20133137.
  • FAO, Climate change and food security: Risk and Responses. 2015.
  • S. Li, L. Zhao, S. Zhang, Q. Liu, and H. Li, ‘Effects of Nitrogen Level and Soil Moisture on Sweet Potato Root Distribution and Soil Chemical Properties’, J Soil Sci Plant Nutr, vol. 21, no. 1, pp. 536–546, Mar. 2021, doi: 10.1007/s42729-020-00381-0.
  • C. Li et al., ‘Physiological changes and transcriptome profiling in Saccharum spontaneum L. leaf under water stress and re-watering conditions’, Sci Rep, vol. 11, no. 1, p. 5525, Dec. 2021, doi: 10.1038/s41598-021-85072-1.
  • D. Kapoor, S. Bhardwaj, M. Landi, A. Sharma, M. Ramakrishnan, and A. Sharma, ‘The Impact of Drought in Plant Metabolism: How to Exploit Tolerance Mechanisms to Increase Crop Production’, Applied Sciences, vol. 10, no. 16, p. 5692, Aug. 2020, doi: 10.3390/app10165692.
  • Á. Horel and E. Tóth, ‘Changes in the Soil–Plant–Water System Due to Biochar Amendment’, Water, vol. 13, no. 9, p. 1216, Apr. 2021, doi: 10.3390/w13091216.
  • A. Villordon, D. LaBonte, N. Firon, and E. Carey, ‘Variation in Nitrogen Rate and Local Availability Alter Root Architecture Attributes at the Onset of Storage Root Initiation in “Beauregard” Sweetpotato’, horts, vol. 48, no. 6, pp. 808–815, Jun. 2013, doi: 10.21273/HORTSCI.48.6.808.
  • B. M. Kivuva, S. M. Githiri, G. C. Yencho, and J. Sibiya, ‘Screening sweetpotato genotypes for tolerance to drought stress’, Field Crops Research, vol. 171, pp. 11–22, Feb. 2015, doi: 10.1016/j.fcr.2014.10.018.
  • D. Boguszewska-Mańkowska, K. Zarzyńska, and A. Nosalewicz, ‘Drought Differentially Affects Root System Size and Architecture of Potato Cultivars with Differing Drought Tolerance’, Am. J. Potato Res., vol. 97, no. 1, pp. 54–62, Feb. 2020, doi: 10.1007/s12230-019-09755-2.
  • L. H. Comas, S. R. Becker, V. M. V. Cruz, P. F. Byrne, and D. A. Dierig, ‘Root traits contributing to plant productivity under drought’, Front. Plant Sci., vol. 4, 2013, doi: 10.3389/fpls.2013.00442.
  • T. van der Weijde et al., ‘Impact of drought stress on growth and quality of miscanthus for biofuel production’, GCB Bioenergy, vol. 9, no. 4, pp. 770–782, Apr. 2017, doi: 10.1111/gcbb.12382.
  • A. Ávila-Valdés, M. Quinet, S. Lutts, J. P. Martínez, and X. C. Lizana, ‘Tuber yield and quality responses of potato to moderate temperature increase during Tuber bulking under two water availability scenarios’, Field Crops Research, vol. 251, p. 107786, Jun. 2020, doi: 10.1016/j.fcr.2020.107786.
  • Lewthwaite S.L., Triggs C.M., Sweetpotato cultivar response to prolonged drought.’, Agronomy New Zealand, vol. 42, p. 42,1–12, 2012.
  • V. K. Jain, R. P. Pandey, M. K. Jain, and H.-R. Byun, ‘Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin’, Weather and Climate Extremes, vol. 8, pp. 1–11, Jun. 2015, doi: 10.1016/j.wace.2015.05.002.
  • C. Yan et al., ‘Screening diverse soybean genotypes for drought tolerance by membership function value based on multiple traits and drought-tolerant coefficient of yield’, BMC Plant Biol, vol. 20, no. 1, p. 321, Dec. 2020, doi: 10.1186/s12870-020-02519-9.
  • Y. Cui, S. Ning, J. Jin, S. Jiang, Y. Zhou, and C. Wu, ‘Quantitative Lasting Effects of Drought Stress at a Growth Stage on Soybean Evapotranspiration and Aboveground BIOMASS’, Water, vol. 13, no. 1, p. 18, Dec. 2020, doi: 10.3390/w13010018.
  • R. N. Laurie, S. M. Laurie, C. P. Du Plooy, J. F. Finnie, and J. V. Staden, ‘Yield of Drought-Stressed Sweet Potato in Relation to Canopy Cover, Stem Length and Stomatal Conductance’, JAS, vol. 7, no. 1, p. p201, Dec. 2014, doi: 10.5539/jas.v7n1p201.
  • M. A. Ahanger, N. S. Tomar, M. Tittal, S. Argal, and R. M. Agarwal, ‘Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions’, Physiol Mol Biol Plants, vol. 23, no. 4, pp. 731–744, Oct. 2017, doi: 10.1007/s12298-017-0462-7.
  • M. He, C.-Q. He, and N.-Z. Ding, ‘Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance’, Front. Plant Sci., vol. 9, p. 1771, Dec. 2018, doi: 10.3389/fpls.2018.01771.
  • A. Sharma et al., ‘Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress’, Biomolecules, vol. 9, no. 7, p. 285, Jul. 2019, doi: 10.3390/biom9070285.
  • A. E. Postiglione and G. K. Muday, ‘The Role of ROS Homeostasis in ABA-Induced Guard Cell Signaling’, Front. Plant Sci., vol. 11, p. 968, Jun. 2020, doi: 10.3389/fpls.2020.00968.
  • P. Bharath, S. Gahir, and A. S. Raghavendra, ‘Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense Against Abiotic and Biotic Stress’, Front. Plant Sci., vol. 12, p. 615114, Mar. 2021, doi: 10.3389/fpls.2021.615114.
  • H. Haimeirong and F. Kubota, ‘The Effects of Drought Stress and Leaf Ageing on Leaf Photosynthesis and Electron Transport in Photosystem 2 in Sweet Potato (Ipomoea batatas Lam.) Cultivars’, Photosynt., vol. 41, no. 2, pp. 253–258, Jun. 2003, doi: 10.1023/B:PHOT.0000011958.29441.01.
  • S. Hu, Y. Ding, and C. Zhu, ‘Sensitivity and Responses of Chloroplasts to Heat Stress in Plants’, Front. Plant Sci., vol. 11, p. 375, Apr. 2020, doi: 10.3389/fpls.2020.00375.
  • V. A. Lima, F. V. Pacheco, R. P. Avelar, I. C. A. Alvarenga, J. E. B. P. Pinto, and A. A. D. Alvarenga, ‘Growth, photosynthetic pigments and production of essential oil of long-pepper under different light conditions’, An. Acad. Bras. Ciênc., vol. 89, no. 2, pp. 1167–1174, Apr. 2017, doi: 10.1590/0001-3765201720150770.
  • K. Olsovska, M. Kovar, M. Brestic, M. Zivcak, P. Slamka, and H. B. Shao, ‘Genotypically Identifying Wheat Mesophyll Conductance Regulation under Progressive Drought Stress’, Front. Plant Sci., vol. 7, Aug. 2016, doi: 10.3389/fpls.2016.01111.
  • S. Ahmad et al., ‘Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings’, BMC Plant Biol, vol. 21, no. 1, p. 368, Dec. 2021, doi: 10.1186/s12870-021-03160-w.
  • S. Toscano and D. Romano, ‘Morphological, Physiological, and Biochemical Responses of Zinnia to Drought Stress’, Horticulturae, vol. 7, no. 10, p. 362, Oct. 2021, doi: 10.3390/horticulturae7100362.
  • J. Li, Z. Cang, F. Jiao, X. Bai, D. Zhang, and R. Zhai, ‘Influence of drought stress on photosynthetic characteristics and protective enzymes of potato at seedling stage’, Journal of the Saudi Society of Agricultural Sciences, vol. 16, no. 1, pp. 82–88, Jan. 2017, doi: 10.1016/j.jssas.2015.03.001.
  • A. Mafakheri , A. Siosemardeh , B. Bahramnejad , P. Struik , and Y. Sohrabi, ‘Effect of drought stress on yield, proline, and chlorophyll contents in three chickpea cultivars’, Australian Journal of Crop Science, vol. 4:580-589, 2010.
  • D. W. Lawlor and W. Tezara, ‘Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes’, Annals of Botany, vol. 103, no. 4, pp. 561–579, Feb. 2009, doi: 10.1093/aob/mcn244.
  • M. Haworth, D. Killi, A. Materassi, A. Raschi, and M. Centritto, ‘Impaired Stomatal Control Is Associated with Reduced Photosynthetic Physiology in Crop Species Grown at Elevated [CO2]’, Front. Plant Sci., vol. 7, Oct. 2016, doi: 10.3389/fpls.2016.01568.
  • Z. Wang et al., ‘Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves’, Biology Open, p. bio.035279, Jan. 2018, doi: 10.1242/bio.035279.
  • U. Demirel et al., ‘Physiological, Biochemical, and Transcriptional Responses to Single and Combined Abiotic Stress in Stress-Tolerant and Stress-Sensitive Potato Genotypes’, Front. Plant Sci., vol. 11, p. 169, Feb. 2020, doi: 10.3389/fpls.2020.00169.
  • G. Kaur and B. Asthir, ‘Molecular responses to drought stress in plants’, Biologia plant., vol. 61, no. 2, pp. 201–209, Jun. 2017, doi: 10.1007/s10535-016-0700-9.
  • S. K. Sah, K. R. Reddy, and J. Li, ‘Abscisic Acid and Abiotic Stress Tolerance in Crop Plants’, Front. Plant Sci., vol. 7, May 2016, doi: 10.3389/fpls.2016.00571.
  • K. Vishwakarma et al., ‘Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects’, Front. Plant Sci., vol. 08, Feb. 2017, doi: 10.3389/fpls.2017.00161.
  • J. E. Obidiegwu, ‘Coping with drought: stress and adaptive responses in potato and perspectives for improvement’, Front. Plant Sci., vol. 6, 2015, doi: 10.3389/fpls.2015.00542.
  • Y. Ma, M. C. Dias, and H. Freitas, ‘Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants’, Front. Plant Sci., vol. 11, p. 591911, Nov. 2020, doi: 10.3389/fpls.2020.591911.
  • M. K. Patel et al., ‘Enhancing Salt Tolerance of Plants: From Metabolic Reprogramming to Exogenous Chemical Treatments and Molecular Approaches’, Cells, vol. 9, no. 11, p. 2492, Nov. 2020, doi: 10.3390/cells9112492.
  • D. Jiménez-Arias et al., ‘A Beginner’s Guide to Osmoprotection by Biostimulants’, Plants, vol. 10, no. 2, p. 363, Feb. 2021, doi: 10.3390/plants10020363.
  • M. H. Cruz de Carvalho, ‘Drought stress and reactive oxygen species: production, scavenging and signaling’, Plant Signaling & Behavior, vol. 3, no. 3, pp. 156–165, Mar. 2008, doi: 10.4161/psb.3.3.5536.
  • P. Sharma, A. B. Jha, R. S. Dubey, and M. Pessarakli, ‘Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions’, Journal of Botany, vol. 2012, pp. 1–26, Apr. 2012, doi: 10.1155/2012/217037.
  • S. Yooyongwech, C. Theerawitaya, T. Samphumphuang, and S. Cha-um, ‘Water-deficit tolerant identification in sweet potato genotypes (Ipomoea batatas (L.) Lam.) in vegetative developmental stage using multivariate physiological indices’, Scientia Horticulturae, vol. 162, pp. 242–251, Oct. 2013, doi: 10.1016/j.scienta.2013.07.041.
  • K. Das and A. Roychoudhury, ‘Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants’, Front. Environ. Sci., vol. 2, Dec. 2014, doi: 10.3389/fenvs.2014.00053.
  • M. Hasanuzzaman et al., ‘Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator’, Antioxidants, vol. 9, no. 8, p. 681, Jul. 2020, doi: 10.3390/antiox9080681.
  • V. D. Rajput et al., ‘Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress’, Biology, vol. 10, no. 4, p. 267, Mar. 2021, doi: 10.3390/biology10040267.
  • P. Dvořák, Y. Krasylenko, A. Zeiner, J. Šamaj, and T. Takáč, ‘Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants’, Front. Plant Sci., vol. 11, p. 618835, Feb. 2021, doi: 10.3389/fpls.2020.618835.
  • D. K. Gupta, J. M. Palma, and F. J. Corpas, Eds., Reactive Oxygen Species and Oxidative Damage in Plants Under Stress. Cham: Springer International Publishing, 2015. doi: 10.1007/978-3-319-20421-5.
  • H. Huang, F. Ullah, D.-X. Zhou, M. Yi, and Y. Zhao, ‘Mechanisms of ROS Regulation of Plant Development and Stress Responses’, Front. Plant Sci., vol. 10, p. 800, Jun. 2019, doi: 10.3389/fpls.2019.00800.
  • X.-J. Xia, Y.-H. Zhou, K. Shi, J. Zhou, C. H. Foyer, and J.-Q. Yu, ‘Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance’, Journal of Experimental Botany, vol. 66, no. 10, pp. 2839–2856, May 2015, doi: 10.1093/jxb/erv089.
  • X. Yang, M. Lu, Y. Wang, Y. Wang, Z. Liu, and S. Chen, ‘Response Mechanism of Plants to Drought Stress’, Horticulturae, vol. 7, no. 3, p. 50, Mar. 2021, doi: 10.3390/horticulturae7030050.
  • I. I. Ozyigit et al., ‘Identification and Comparative Analysis of H2O2-Scavenging Enzymes (Ascorbate Peroxidase and Glutathione Peroxidase) in Selected Plants Employing Bioinformatics Approaches’, Front. Plant Sci., vol. 7, Mar. 2016, doi: 10.3389/fpls.2016.00301.
  • J. Dumanović, E. Nepovimova, M. Natić, K. Kuča, and V. Jaćević, ‘The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview’, Front. Plant Sci., vol. 11, p. 552969, Jan. 2021, doi: 10.3389/fpls.2020.552969.
  • K. Pakos‐Zebrucka, I. Koryga, K. Mnich, M. Ljujic, A. Samali, and A. M. Gorman, ‘The integrated stress response’, EMBO Rep, vol. 17, no. 10, pp. 1374–1395, Oct. 2016, doi: 10.15252/embr.201642195.
Year 2021, Volume: 2 Issue: 2, 43 - 53, 06.12.2021

Abstract

References

  • I. Sugri, B. K. Maalekuu, E. Gaveh, and F. Kusi, ‘Sweet Potato Value Chain Analysis Reveals Opportunities for Increased Income and Food Security in Northern Ghana’, Advances in Agriculture, vol. 2017, pp. 1–14, 2017, doi: 10.1155/2017/8767340.
  • S. Neela and S. W. Fanta, ‘Review on nutritional composition of orange‐fleshed sweet potato and its role in management of vitamin A deficiency’, Food Sci Nutr, vol. 7, no. 6, pp. 1920–1945, Jun. 2019, doi: 10.1002/fsn3.1063.
  • P. J. O’Brien, ‘The Sweet Potato: Its Origin and Dispersal’, American Anthropologist, vol. 74, no. 3, pp. 342–365, Jun. 1972, doi: 10.1525/aa.1972.74.3.02a00070.
  • T. Robertson, A. Alzaabi, M. Robertson, and B. Fielding, ‘Starchy Carbohydrates in a Healthy Diet: The Role of the Humble Potato’, Nutrients, vol. 10, no. 11, p. 1764, Nov. 2018, doi: 10.3390/nu10111764.
  • M. Baba, A. Nasiru, I. Saleh Kark, I. Rakson Muh, and N. Bello Rano, ‘Nutritional Evaluation of Sweet Potato Vines from Twelve Cultivars as Feed for Ruminant Animals’, Asian J. of Animal and Veterinary Advances, vol. 13, no. 1, pp. 25–29, Dec. 2017, doi: 10.3923/ajava.2018.25.29.
  • J. W. Anderson et al., ‘Health benefits of dietary fiber’, Nutrition Reviews, vol. 67, no. 4, pp. 188–205, Apr. 2009, doi: 10.1111/j.1753-4887.2009.00189.x.
  • J. L. Slavin and B. Lloyd, ‘Health Benefits of Fruits and Vegetables’, Advances in Nutrition, vol. 3, no. 4, pp. 506–516, Jul. 2012, doi: 10.3945/an.112.002154.
  • K. Glato et al., ‘Structure of sweet potato (Ipomoea batatas) diversity in West Africa covaries with a climatic gradient’, PLoS ONE, vol. 12, no. 5, p. e0177697, May 2017, doi: 10.1371/journal.pone.0177697.
  • Zuo et al., ‘Inflammaging and Oxidative Stress in Human Diseases: From Molecular Mechanisms to Novel Treatments’, IJMS, vol. 20, no. 18, p. 4472, Sep. 2019, doi: 10.3390/ijms20184472.
  • E. B. Kurutas, ‘The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state’, Nutr J, vol. 15, no. 1, p. 71, Dec. 2015, doi: 10.1186/s12937-016-0186-5.
  • B. Dereje, A. Girma, D. Mamo, and T. Chalchisa, ‘Functional properties of sweet potato flour and its role in product development: a review’, International Journal of Food Properties, vol. 23, no. 1, pp. 1639–1662, Jan. 2020, doi: 10.1080/10942912.2020.1818776.
  • M. Nedunchezhiyan, G. Byju, and R. C. Ray, ‘Effect of Tillage, Irrigation, and Nutrient Levels on Growth and Yield of Sweet Potato in Rice Fallow’, ISRN Agronomy, vol. 2012, pp. 1–13, Dec. 2012, doi: 10.5402/2012/291285.
  • A. Chandrasekara and T. Josheph Kumar, ‘Roots and Tuber Crops as Functional Foods: A Review on Phytochemical Constituents and Their Potential Health Benefits’, International Journal of Food Science, vol. 2016, pp. 1–15, 2016, doi: 10.1155/2016/3631647.
  • E. Gasura, F. Matsaure, P. S. Setimela, J. T. Rugare, C. S. Nyakurwa, and M. Andrade, ‘Performance, Variance Components, and Acceptability of Pro-vitamin A-Biofortified Sweetpotato in Southern Africa and Implications in Future Breeding’, Front. Plant Sci., vol. 12, p. 696738, Sep. 2021, doi: 10.3389/fpls.2021.696738.
  • M. Peña-Gallardo, S. M. Vicente-Serrano, F. Domínguez-Castro, and S. Beguería, ‘The impact of drought on the productivity of two rainfed crops in Spain’, Nat. Hazards Earth Syst. Sci., vol. 19, no. 6, pp. 1215–1234, Jun. 2019, doi: 10.5194/nhess-19-1215-2019.
  • R. L. Ray, A. Fares, and E. Risch, ‘Effects of Drought on Crop Production and Cropping Areas in Texas’, Agric. environ. lett., vol. 3, no. 1, p. 170037, Jan. 2018, doi: 10.2134/ael2017.11.0037.
  • Low J. et al., ‘Sweet potato development and delivery in sub-Saharan Africa’, AJFAND, vol. 17, no. 02, pp. 11955–11972, Apr. 2017, doi: 10.18697/ajfand.78.HarvestPlus07.
  • J. W. Low, R. Ortiz, E. Vandamme, M. Andrade, B. Biazin, and W. J. Grüneberg, ‘Nutrient-Dense Orange-Fleshed Sweetpotato: Advances in Drought-Tolerance Breeding and Understanding of Management Practices for Sustainable Next-Generation Cropping Systems in Sub-Saharan Africa’, Front. Sustain. Food Syst., vol. 4, p. 50, May 2020, doi: 10.3389/fsufs.2020.00050.
  • S. Fan, Z. Yuan, L. Feng, X. Wang, X. Ding, and H. Zhen, ‘Effects of drought stress on physiological and biochemical parameters of Dahlia pinnata’, The Journal of Applied Ecology, vol. 22, no. 3, pp. 651–657, 2011.
  • Y. Fang and L. Xiong, ‘General mechanisms of drought response and their application in drought resistance improvement in plants’, Cell. Mol. Life Sci., vol. 72, no. 4, pp. 673–689, Feb. 2015, doi: 10.1007/s00018-014-1767-0.
  • K. Razi and S. Muneer, ‘Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops’, Critical Reviews in Biotechnology, vol. 41, no. 5, pp. 669–691, Jul. 2021, doi: 10.1080/07388551.2021.1874280.
  • S. Fahad et al., ‘Crop Production under Drought and Heat Stress: Plant Responses and Management Options’, Front. Plant Sci., vol. 8, p. 1147, Jun. 2017, doi: 10.3389/fpls.2017.01147.
  • A. Raza et al., ‘Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review’, Plants, vol. 8, no. 2, p. 34, Jan. 2019, doi: 10.3390/plants8020034.
  • S. Yadav, P. Modi, A. Dave, A. Vijapura, D. Patel, and M. Patel, ‘Effect of Abiotic Stress on Crops’, in Sustainable Crop Production, M. Hasanuzzaman, M. Carvalho Minhoto Teixeira Filho, M. Fujita, and T. Assis Rodrigues Nogueira, Eds. IntechOpen, 2020. doi: 10.5772/intechopen.88434.
  • A. Sallam, A. M. Alqudah, M. F. A. Dawood, P. S. Baenziger, and A. Börner, ‘Drought Stress Tolerance in Wheat and Barley: Advances in Physiology, Breeding and Genetics Research’, IJMS, vol. 20, no. 13, p. 3137, Jun. 2019, doi: 10.3390/ijms20133137.
  • FAO, Climate change and food security: Risk and Responses. 2015.
  • S. Li, L. Zhao, S. Zhang, Q. Liu, and H. Li, ‘Effects of Nitrogen Level and Soil Moisture on Sweet Potato Root Distribution and Soil Chemical Properties’, J Soil Sci Plant Nutr, vol. 21, no. 1, pp. 536–546, Mar. 2021, doi: 10.1007/s42729-020-00381-0.
  • C. Li et al., ‘Physiological changes and transcriptome profiling in Saccharum spontaneum L. leaf under water stress and re-watering conditions’, Sci Rep, vol. 11, no. 1, p. 5525, Dec. 2021, doi: 10.1038/s41598-021-85072-1.
  • D. Kapoor, S. Bhardwaj, M. Landi, A. Sharma, M. Ramakrishnan, and A. Sharma, ‘The Impact of Drought in Plant Metabolism: How to Exploit Tolerance Mechanisms to Increase Crop Production’, Applied Sciences, vol. 10, no. 16, p. 5692, Aug. 2020, doi: 10.3390/app10165692.
  • Á. Horel and E. Tóth, ‘Changes in the Soil–Plant–Water System Due to Biochar Amendment’, Water, vol. 13, no. 9, p. 1216, Apr. 2021, doi: 10.3390/w13091216.
  • A. Villordon, D. LaBonte, N. Firon, and E. Carey, ‘Variation in Nitrogen Rate and Local Availability Alter Root Architecture Attributes at the Onset of Storage Root Initiation in “Beauregard” Sweetpotato’, horts, vol. 48, no. 6, pp. 808–815, Jun. 2013, doi: 10.21273/HORTSCI.48.6.808.
  • B. M. Kivuva, S. M. Githiri, G. C. Yencho, and J. Sibiya, ‘Screening sweetpotato genotypes for tolerance to drought stress’, Field Crops Research, vol. 171, pp. 11–22, Feb. 2015, doi: 10.1016/j.fcr.2014.10.018.
  • D. Boguszewska-Mańkowska, K. Zarzyńska, and A. Nosalewicz, ‘Drought Differentially Affects Root System Size and Architecture of Potato Cultivars with Differing Drought Tolerance’, Am. J. Potato Res., vol. 97, no. 1, pp. 54–62, Feb. 2020, doi: 10.1007/s12230-019-09755-2.
  • L. H. Comas, S. R. Becker, V. M. V. Cruz, P. F. Byrne, and D. A. Dierig, ‘Root traits contributing to plant productivity under drought’, Front. Plant Sci., vol. 4, 2013, doi: 10.3389/fpls.2013.00442.
  • T. van der Weijde et al., ‘Impact of drought stress on growth and quality of miscanthus for biofuel production’, GCB Bioenergy, vol. 9, no. 4, pp. 770–782, Apr. 2017, doi: 10.1111/gcbb.12382.
  • A. Ávila-Valdés, M. Quinet, S. Lutts, J. P. Martínez, and X. C. Lizana, ‘Tuber yield and quality responses of potato to moderate temperature increase during Tuber bulking under two water availability scenarios’, Field Crops Research, vol. 251, p. 107786, Jun. 2020, doi: 10.1016/j.fcr.2020.107786.
  • Lewthwaite S.L., Triggs C.M., Sweetpotato cultivar response to prolonged drought.’, Agronomy New Zealand, vol. 42, p. 42,1–12, 2012.
  • V. K. Jain, R. P. Pandey, M. K. Jain, and H.-R. Byun, ‘Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin’, Weather and Climate Extremes, vol. 8, pp. 1–11, Jun. 2015, doi: 10.1016/j.wace.2015.05.002.
  • C. Yan et al., ‘Screening diverse soybean genotypes for drought tolerance by membership function value based on multiple traits and drought-tolerant coefficient of yield’, BMC Plant Biol, vol. 20, no. 1, p. 321, Dec. 2020, doi: 10.1186/s12870-020-02519-9.
  • Y. Cui, S. Ning, J. Jin, S. Jiang, Y. Zhou, and C. Wu, ‘Quantitative Lasting Effects of Drought Stress at a Growth Stage on Soybean Evapotranspiration and Aboveground BIOMASS’, Water, vol. 13, no. 1, p. 18, Dec. 2020, doi: 10.3390/w13010018.
  • R. N. Laurie, S. M. Laurie, C. P. Du Plooy, J. F. Finnie, and J. V. Staden, ‘Yield of Drought-Stressed Sweet Potato in Relation to Canopy Cover, Stem Length and Stomatal Conductance’, JAS, vol. 7, no. 1, p. p201, Dec. 2014, doi: 10.5539/jas.v7n1p201.
  • M. A. Ahanger, N. S. Tomar, M. Tittal, S. Argal, and R. M. Agarwal, ‘Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions’, Physiol Mol Biol Plants, vol. 23, no. 4, pp. 731–744, Oct. 2017, doi: 10.1007/s12298-017-0462-7.
  • M. He, C.-Q. He, and N.-Z. Ding, ‘Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance’, Front. Plant Sci., vol. 9, p. 1771, Dec. 2018, doi: 10.3389/fpls.2018.01771.
  • A. Sharma et al., ‘Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress’, Biomolecules, vol. 9, no. 7, p. 285, Jul. 2019, doi: 10.3390/biom9070285.
  • A. E. Postiglione and G. K. Muday, ‘The Role of ROS Homeostasis in ABA-Induced Guard Cell Signaling’, Front. Plant Sci., vol. 11, p. 968, Jun. 2020, doi: 10.3389/fpls.2020.00968.
  • P. Bharath, S. Gahir, and A. S. Raghavendra, ‘Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense Against Abiotic and Biotic Stress’, Front. Plant Sci., vol. 12, p. 615114, Mar. 2021, doi: 10.3389/fpls.2021.615114.
  • H. Haimeirong and F. Kubota, ‘The Effects of Drought Stress and Leaf Ageing on Leaf Photosynthesis and Electron Transport in Photosystem 2 in Sweet Potato (Ipomoea batatas Lam.) Cultivars’, Photosynt., vol. 41, no. 2, pp. 253–258, Jun. 2003, doi: 10.1023/B:PHOT.0000011958.29441.01.
  • S. Hu, Y. Ding, and C. Zhu, ‘Sensitivity and Responses of Chloroplasts to Heat Stress in Plants’, Front. Plant Sci., vol. 11, p. 375, Apr. 2020, doi: 10.3389/fpls.2020.00375.
  • V. A. Lima, F. V. Pacheco, R. P. Avelar, I. C. A. Alvarenga, J. E. B. P. Pinto, and A. A. D. Alvarenga, ‘Growth, photosynthetic pigments and production of essential oil of long-pepper under different light conditions’, An. Acad. Bras. Ciênc., vol. 89, no. 2, pp. 1167–1174, Apr. 2017, doi: 10.1590/0001-3765201720150770.
  • K. Olsovska, M. Kovar, M. Brestic, M. Zivcak, P. Slamka, and H. B. Shao, ‘Genotypically Identifying Wheat Mesophyll Conductance Regulation under Progressive Drought Stress’, Front. Plant Sci., vol. 7, Aug. 2016, doi: 10.3389/fpls.2016.01111.
  • S. Ahmad et al., ‘Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings’, BMC Plant Biol, vol. 21, no. 1, p. 368, Dec. 2021, doi: 10.1186/s12870-021-03160-w.
  • S. Toscano and D. Romano, ‘Morphological, Physiological, and Biochemical Responses of Zinnia to Drought Stress’, Horticulturae, vol. 7, no. 10, p. 362, Oct. 2021, doi: 10.3390/horticulturae7100362.
  • J. Li, Z. Cang, F. Jiao, X. Bai, D. Zhang, and R. Zhai, ‘Influence of drought stress on photosynthetic characteristics and protective enzymes of potato at seedling stage’, Journal of the Saudi Society of Agricultural Sciences, vol. 16, no. 1, pp. 82–88, Jan. 2017, doi: 10.1016/j.jssas.2015.03.001.
  • A. Mafakheri , A. Siosemardeh , B. Bahramnejad , P. Struik , and Y. Sohrabi, ‘Effect of drought stress on yield, proline, and chlorophyll contents in three chickpea cultivars’, Australian Journal of Crop Science, vol. 4:580-589, 2010.
  • D. W. Lawlor and W. Tezara, ‘Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes’, Annals of Botany, vol. 103, no. 4, pp. 561–579, Feb. 2009, doi: 10.1093/aob/mcn244.
  • M. Haworth, D. Killi, A. Materassi, A. Raschi, and M. Centritto, ‘Impaired Stomatal Control Is Associated with Reduced Photosynthetic Physiology in Crop Species Grown at Elevated [CO2]’, Front. Plant Sci., vol. 7, Oct. 2016, doi: 10.3389/fpls.2016.01568.
  • Z. Wang et al., ‘Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves’, Biology Open, p. bio.035279, Jan. 2018, doi: 10.1242/bio.035279.
  • U. Demirel et al., ‘Physiological, Biochemical, and Transcriptional Responses to Single and Combined Abiotic Stress in Stress-Tolerant and Stress-Sensitive Potato Genotypes’, Front. Plant Sci., vol. 11, p. 169, Feb. 2020, doi: 10.3389/fpls.2020.00169.
  • G. Kaur and B. Asthir, ‘Molecular responses to drought stress in plants’, Biologia plant., vol. 61, no. 2, pp. 201–209, Jun. 2017, doi: 10.1007/s10535-016-0700-9.
  • S. K. Sah, K. R. Reddy, and J. Li, ‘Abscisic Acid and Abiotic Stress Tolerance in Crop Plants’, Front. Plant Sci., vol. 7, May 2016, doi: 10.3389/fpls.2016.00571.
  • K. Vishwakarma et al., ‘Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects’, Front. Plant Sci., vol. 08, Feb. 2017, doi: 10.3389/fpls.2017.00161.
  • J. E. Obidiegwu, ‘Coping with drought: stress and adaptive responses in potato and perspectives for improvement’, Front. Plant Sci., vol. 6, 2015, doi: 10.3389/fpls.2015.00542.
  • Y. Ma, M. C. Dias, and H. Freitas, ‘Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants’, Front. Plant Sci., vol. 11, p. 591911, Nov. 2020, doi: 10.3389/fpls.2020.591911.
  • M. K. Patel et al., ‘Enhancing Salt Tolerance of Plants: From Metabolic Reprogramming to Exogenous Chemical Treatments and Molecular Approaches’, Cells, vol. 9, no. 11, p. 2492, Nov. 2020, doi: 10.3390/cells9112492.
  • D. Jiménez-Arias et al., ‘A Beginner’s Guide to Osmoprotection by Biostimulants’, Plants, vol. 10, no. 2, p. 363, Feb. 2021, doi: 10.3390/plants10020363.
  • M. H. Cruz de Carvalho, ‘Drought stress and reactive oxygen species: production, scavenging and signaling’, Plant Signaling & Behavior, vol. 3, no. 3, pp. 156–165, Mar. 2008, doi: 10.4161/psb.3.3.5536.
  • P. Sharma, A. B. Jha, R. S. Dubey, and M. Pessarakli, ‘Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions’, Journal of Botany, vol. 2012, pp. 1–26, Apr. 2012, doi: 10.1155/2012/217037.
  • S. Yooyongwech, C. Theerawitaya, T. Samphumphuang, and S. Cha-um, ‘Water-deficit tolerant identification in sweet potato genotypes (Ipomoea batatas (L.) Lam.) in vegetative developmental stage using multivariate physiological indices’, Scientia Horticulturae, vol. 162, pp. 242–251, Oct. 2013, doi: 10.1016/j.scienta.2013.07.041.
  • K. Das and A. Roychoudhury, ‘Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants’, Front. Environ. Sci., vol. 2, Dec. 2014, doi: 10.3389/fenvs.2014.00053.
  • M. Hasanuzzaman et al., ‘Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator’, Antioxidants, vol. 9, no. 8, p. 681, Jul. 2020, doi: 10.3390/antiox9080681.
  • V. D. Rajput et al., ‘Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress’, Biology, vol. 10, no. 4, p. 267, Mar. 2021, doi: 10.3390/biology10040267.
  • P. Dvořák, Y. Krasylenko, A. Zeiner, J. Šamaj, and T. Takáč, ‘Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants’, Front. Plant Sci., vol. 11, p. 618835, Feb. 2021, doi: 10.3389/fpls.2020.618835.
  • D. K. Gupta, J. M. Palma, and F. J. Corpas, Eds., Reactive Oxygen Species and Oxidative Damage in Plants Under Stress. Cham: Springer International Publishing, 2015. doi: 10.1007/978-3-319-20421-5.
  • H. Huang, F. Ullah, D.-X. Zhou, M. Yi, and Y. Zhao, ‘Mechanisms of ROS Regulation of Plant Development and Stress Responses’, Front. Plant Sci., vol. 10, p. 800, Jun. 2019, doi: 10.3389/fpls.2019.00800.
  • X.-J. Xia, Y.-H. Zhou, K. Shi, J. Zhou, C. H. Foyer, and J.-Q. Yu, ‘Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance’, Journal of Experimental Botany, vol. 66, no. 10, pp. 2839–2856, May 2015, doi: 10.1093/jxb/erv089.
  • X. Yang, M. Lu, Y. Wang, Y. Wang, Z. Liu, and S. Chen, ‘Response Mechanism of Plants to Drought Stress’, Horticulturae, vol. 7, no. 3, p. 50, Mar. 2021, doi: 10.3390/horticulturae7030050.
  • I. I. Ozyigit et al., ‘Identification and Comparative Analysis of H2O2-Scavenging Enzymes (Ascorbate Peroxidase and Glutathione Peroxidase) in Selected Plants Employing Bioinformatics Approaches’, Front. Plant Sci., vol. 7, Mar. 2016, doi: 10.3389/fpls.2016.00301.
  • J. Dumanović, E. Nepovimova, M. Natić, K. Kuča, and V. Jaćević, ‘The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview’, Front. Plant Sci., vol. 11, p. 552969, Jan. 2021, doi: 10.3389/fpls.2020.552969.
  • K. Pakos‐Zebrucka, I. Koryga, K. Mnich, M. Ljujic, A. Samali, and A. M. Gorman, ‘The integrated stress response’, EMBO Rep, vol. 17, no. 10, pp. 1374–1395, Oct. 2016, doi: 10.15252/embr.201642195.
There are 79 citations in total.

Details

Primary Language English
Subjects Agricultural Policy
Journal Section Review Articles
Authors

Eric Kuopuobe Naawe 0000-0001-8278-7289

Sani Ibrahim

İbrahim Köken 0000-0001-9994-0665

Ufuk Demirel

Mehmet Caliskan

Publication Date December 6, 2021
Published in Issue Year 2021 Volume: 2 Issue: 2

Cite

IEEE E. K. Naawe, S. Ibrahim, İ. Köken, U. Demirel, and M. Caliskan, “A REVİEW: MORPHOLOGICAL, PHYSIOLOGICAL AND MOLECULAR RESPONSES OF SWEETPOTATO TO DROUGHT”, (EJSET), vol. 2, no. 2, pp. 43–53, 2021.