Research Article
BibTex RIS Cite
Year 2025, , 9 - 21, 01.01.2025
https://doi.org/10.18393/ejss.1564167

Abstract

References

  • Aguilera-Huertas, J., Lozano-García, B., González-Rosado, M., Parras-Alcántara, L., 2021. Effects of management and hillside position on soil organic carbon stratification in mediterranean centenary olive grove. Agronomy 11(4): 650.
  • Amighi, S.J., Asgari, H., Sheikh, V.B., Sardo, M.S., 2013. Effects of agroforestry systems on carbon sequestration and improvement soil quality. International Journal of Agriculture 3(4): 822.
  • Aminiyan, M.M., Hosseini, H., Heydariyan, A., 2018. Microbial communities and their characteristics in a soil amended by nanozeolite and some plant residues: Short time in-situ incubation. Eurasian Journal of Soil Science 7(1): 9-19.
  • Aminiyan, M.M., Shorafa, M., Pourbabaee, A.A., 2024. Mitigating the detrimental impacts of low-and high-density polyethylene microplastics using a novel microbial consortium on a soil-plant system: Insights and interactions. Ecotoxicology and Environmental Safety 283: 116805.
  • Aminiyan, M.M., Sinegani, A.A.S., Sheklabadi, M., 2015a. Aggregation stability and organic carbon fraction in a soil amended with some plant residues, nanozeolite, and natural zeolite. International Journal of Recycling of Organic Waste in Agriculture 4(1): 11-22.
  • Aminiyan, M.M., Sinegani, A.A.S., Sheklabadi, M., 2015b. Assessment of changes in different fractions of the organic carbon in a soil amended by nanozeolite and some plant residues: incubation study. International Journal of Recycling of Organic Waste in Agriculture 4(4): 239-247.
  • Aminiyan, M.M., Sinegani, A.A.S., Sheklabadi, M., 2016. The effect of zeolite and some plant residues on soil organic carbon changes in density and soluble fractions: Incubation study. Eurasian Journal of Soil Science 5(1): 74-83.
  • Antón, R., Ruiz-Sagaseta, A., Orcaray, L., Arricibita, F.J., Enrique, A., Soto, I.d., Virto, I., 2021. Soil water retention and soil compaction assessment in a regional-scale strategy to improve climate change adaptation of agriculture in Navarre, Spain. Agronomy 11(3): 607.
  • Aryal, J.P., Sapkota, T.B., Khurana, R., Khatri-Chhetri, A., 2020. Climate change mitigation options among farmers in South Asia. Environment, Development and Sustainability 22(4): 3267-3289.
  • Asmare, T.K., Abayneh, B., Yigzaw, M., Birhan, T.A., 2023. The effect of land use type on selected soil physicochemical properties in Shihatig watershed, Dabat district, Northwest Ethiopia. Heliyon 9(5): e16038
  • Augusto, L., Achat, D.L., Jonard, M., Vidal, D., Ringeval, B., 2017. Soil parent material—A major driver of plant nutrient limitations in terrestrial ecosystems. Global Change Biology 23(9): 3808-3824.
  • Azizi, P., Soltani, A., Bagheri, F., Sharifi, S., Mikaeili, M., 2022. An integrated modelling approach to urban growth and land use/cover change. Land 11(10): 1715.
  • Babur, E., Dindaroğlu, T., Solaiman, Z.M., Battaglia, M.L., 2021. Microbial respiration, microbial biomass and activity are highly sensitive to forest tree species and seasonal patterns in the Eastern Mediterranean Karst Ecosystems. Science of the Total Environment 775: 145868.
  • Bakhshandeh, E., Hossieni, M., Zeraatpisheh, M., Francaviglia, R., 2019. Land use change effects on soil quality and biological fertility: a case study in northern Iran. European Journal of Soil Biology 95: 103119.
  • Barati, A.A., Zhoolideh, M., Azadi, H., Lee, J.-H., Scheffran, J., 2023. Interactions of land-use cover and climate change at global level: How to mitigate the environmental risks and warming effects. Ecological Indicators 146: 109829.
  • Barnett, S.E., Youngblut, N.D., Buckley, D.H., 2020. Soil characteristics and land-use drive bacterial community assembly patterns. FEMS Microbiology Ecology 96(1): fiz194.
  • Basheer, S., Wang, X., Farooque, A.A., Nawaz, R.A., Pang, T., Neokye, E.O., 2024. A review of greenhouse gas emissions from agricultural soil. Sustainability 16(11): 4789.
  • Benslama, A., Benbrahim, F., Navarro-Pedreño, J., Lucas, I.G., Vidal, M.M.J., Almendro-Candel, M.B., 2024. Organic carbon management and the relations with climate change. In: Frontier Studies in Soil Science. Núñez-Delgado, A. (Ed.). Springer, Cham. pp. 109-133.
  • Boroumand, M., Ghajar Sepalnou, M., Bahmanyar, M.A., Salek Gilani, S., 2015. Evaluation of the effects of land use change from forest areas into agricultural lands on some chemical properties of soil (Case Study: Zarin Abad, Sari, Iran). Physical Geography Research Quarterly 47(3): 435-449.
  • Bremner, J.M., 1996. Nitrogen-total. In: Methods of Soil Analysis: Part 3 Chemical Methods, 5.3. Sparks, D.L. Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.). SSSA Book Series No. 5. ASA-SSSA Madison WI, USA, pp. 1085– 1121.
  • Clerici, N., Cote-Navarro, F., Escobedo, F.J., Rubiano, K., Villegas, J.C., 2019. Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Science of the Total Environment 685: 1181-1192.
  • da Cunha, E.R., Santos, C.A.G., da Silva, R.M., Panachuki, E., de Oliveira, P.T.S., de Souza Oliveira, N., dos Santos Falcão, K., 2021. Assessment of current and future land use/cover changes in soil erosion in the Rio da Prata basin (Brazil). Science of The Total Environment 818: 151811.
  • De Stefano, A., Jacobson, M.G., 2018. Soil carbon sequestration in agroforestry systems: a meta-analysis. Agroforestry Systems 92(2): 285-299.
  • Deveau, A., Bonito, G., Uehling, J., Paoletti, M., Becker, M., Bindschedler, S., Hacquard, S., Hervé, V., Labbé, J., Lastovetsky, O.A., 2018. Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiology Reviews 42(3): 335-352.
  • Diwediga, B., Le, Q.B., Agodzo, S., Wala, K., 2017. Potential storages and drivers of soil organic carbon and total nitrogen across river basin landscape: The case of Mo river basin (Togo) in West Africa. Ecological Engineering 99: 298-309.
  • Ekka, P., Patra, S., Upreti, M., Kumar, G., Kumar, A., Saikia, P., 2023. Land Degradation and its impacts on biodiversity and ecosystem services. In: Land and Environmental Management through Forestry. Raj, A., Jhariya, M.K., Banerjee, A., Nerma, S., Bargali, K. (Eds.). Wiley & Sons. Inc. pp. 77-101.
  • Eze, S., Magilton, M., Magnone, D., Varga, S., Gould, I., Mercer, T.G., Goddard, M.R., 2023. Meta-analysis of global soil data identifies robust indicators for short-term changes in soil organic carbon stock following land use change. Science of the Total Environment 860: 160484.
  • Fan, L., Han, W., 2020. Soil respiration after forest conversion to tea gardens: A chronosequence study. Catena 190: 104532.
  • Fenton, T., Brown, J., Mausbach, M., 2018. Effects of long-term cropping on organic matter content of soils: implications for soil quality. In: Soil quality and soil erosion. Lal, R. (Ed.). CRC Press, pp. 95-124.
  • Fernández-Bravo, M., Gschwend, F., Mayerhofer, J., Hug, A., Widmer, F., Enkerli, J., 2021. Land-use type drives soil population structures of the entomopathogenic fungal genus Metarhizium. Microorganisms 9(7): 1380.
  • Gaël, M.O.R., Neil-Yohan, M., Alexis, N., Jeremy, S., Davi-Lin, M.E., Guirema, A.M., Aubin, O.J., Eric, R., Michel, M.M., 2021. Carbon and nitrogen stocks under various land cover in Gabon. Geoderma Regional 25: e00363.
  • Gebresamuel, G., Molla, B., Teka, K., Negash, E., Haile, M., Okolo, C.C., 2022. Changes in soil organic carbon stock and nutrient status after conversion of pasture land to cultivated land in semi-arid areas of northern Ethiopia. Archives of Agronomy and Soil Science 68(1): 44-60.
  • Gee, G.W., Or, D., 2002. Particle-size analysis. In: Methods of Soil Analysis: Part 4 Physical Methods, 5.4. Dane, J.H., Topp G.C. (Eds.), SSSA Book Series. Soil Science Society of America, Madison, Wisconsin, USA. pp. 255–293.
  • Hajabbasi, M., Basalatpour, A., Maleki, A., 2007. Effect of shifting rangeland to farmland on some physical and chemical properties of south and southwest soils of Isfahan. Journal of Scince Technology of Agriculture Natural Resource 11(42): 525-534. in Persian
  • Hasanpori, R., Sepehry, A., Barani, H., 2020. Effect of Rangeland Conversion to Dryland Farming on Soil Chemical Properties (Case study: Kian rangelands, Lorestan, Iran). Journal of Rangeland Science 10(1): 49-56. in Persian
  • Hashemi Rad, S., Kiani, F., Meftah Helghi, M., Hematzadeh, Y., 2018. Effect of land use on physical and chemical parameters of soil and sediment in Qarnave and Yelcheshme watersheds, Golestan Province, Iran. Environmental Resources Research 6(2): 89-102.
  • Isermeyer, H., 1952. Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Boden. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 56(1-3): 26-38.
  • Jahangir, M.M.R., Islam, S., Nitu, T.T., Uddin, S., Kabir, A.K.M.A., Meah, M.B., Islam, R., 2021. Bio-compost-based integrated soil fertility management improves post-harvest soil structural and elemental quality in a two-year conservation agriculture practice. Agronomy 11(11): 2101.
  • Japelaghi, M., Gholamalifard, M., Shayesteh, K., 2019. Spatio-temporal analysis and prediction of landscape patterns and change processes in the Central Zagros region, Iran. Remote Sensing Applications: Society and Environment 15: 100244.
  • Kern, J.S., 1994. Spatial patterns of soil organic carbon in the contiguous United States. Soil Science Society of America Journal 58(2): 439-455.
  • Khormali, F., Shamsi, S., 2009. Investigation of the quality and micromorphology of soil evolution in different landuses of a loess hillslope of Golestan province, a case study in Ghapan region. Journal of Agricultural Sciences and Natural Resources 16(3): 14-26.
  • Kim, D.G., Kirschbaum, M.U., Eichler-Löbermann, B., Gifford, R.M., Liáng, L.L., 2023. The effect of land-use change on soil C, N, P, and their stoichiometries: A global synthesis. Agriculture, Ecosystems & Environment 348: 108402.
  • Kooch, Y., Ghorbanzadeh, N., Haghverdi, K., Francaviglia, R., 2023. Soil quality cannot be improved after thirty years of land use change from forest to rangeland. Science of The Total Environment 856: 159132.
  • Kooch, Y., Mehr, M.A., Hosseini, S.M., 2021a. Soil biota and fertility along a gradient of forest degradation in a temperate ecosystem. Catena 204: 105428.
  • Kooch, Y., Piri, A.S., Tilaki, G.A.D., 2021b. Tree cover mediate indices related to the content of organic matter and the size of microbial population in semi-arid ecosystems. Journal of Environmental Management 285: 112144.
  • Kopittke, P.M., Dalal, R.C., McKenna, B.A., Smith, P., Wang, P., Weng, Z., van der Bom, F.J., Menzies, N.W., 2024. Soil is a major contributor to global greenhouse gas emissions and climate change. EGUsphere 1-18.
  • Li, H., Yao, Y., Zhang, X., Zhu, H., Wei, X., 2021. Changes in soil physical and hydraulic properties following the conversion of forest to cropland in the black soil region of Northeast China. Catena 198: 104986.
  • Li, Z., Liu, C., Dong, Y., Chang, X., Nie, X., Liu, L., Xiao, H., Lu, Y., Zeng, G., 2017. Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly–gully region of China. Soil and Tillage Research 166: 1-9.
  • Liu, J., Liu, X., Lyu, M., Wang, J., Li, Y., Guo, J., 2021. Changes in soil carbon and nitrogen stocks and microbial community after forest conversion in a subtropical region. Scandinavian Journal of Forest Research 36(7-9): 575-584.
  • Liu, M., Chen, Y., Chen, K., Chen, Y., 2023. Progress and hotspots of research on land-use carbon emissions: A global perspective. Sustainability 15(9): 7245.
  • Liu, X., Lie, Z., Reich, P.B., Zhou, G., Yan, J., Huang, W., Wang, Y., Peñuelas, J., Tissue, D.T., Zhao, M., Wu, T., Wu, D., Xu, W., Li, Y., Tang, X., Zhou, S., Meng, Z., Liu, S., Chu, G., Zhang, D., Zhang, Q., He, X., Liu, J., 2024. Long‐term warming increased carbon sequestration capacity in a humid subtropical forest. Global Change Biology 30(1): e17072.
  • Luo, D., Cheng, R.-M., Liu, S., Shi, Z.-M., Feng, Q.-H., 2020. Responses of soil microbial community composition and enzyme activities to land-use change in the eastern Tibetan Plateau, China. Forests 11(5): 483.
  • Ma, S., Wang, L.-J., Jiang, J., Zhao, Y.-G., 2024. Land use/land cover change and soil property variation increased flood risk in the black soil region, China, in the last 40 years. Environmental Impact Assessment Review 104: 107314.
  • Manral, V., Bargali, K., Bargali, S., Shahi, C., 2020. Changes in soil biochemical properties following replacement of Banj oak forest with Chir pine in Central Himalaya, India. Ecological Processes 9: 30.
  • Matano, A.-S., Kanangire, C.K., Anyona, D.N., Abuom, P.O., Gelder, F.B., Dida, G.O., Owuor, P.O., Ofulla, A.V., 2015. Effects of land use change on land degradation reflected by soil properties along Mara River, Kenya and Tanzania. Open Journal of Soil Science 5(1): 20-38.
  • McGowan, A.R., Nicoloso, R.S., Diop, H.E., Roozeboom, K.L., Rice, C.W., 2019. Soil organic carbon, aggregation, and microbial community structure in annual and perennial biofuel crops. Agronomy Journal 111(1): 128-142.
  • Mirghaed, F.A., Souri, B., 2023. Contribution of land use, soil properties and topographic features for providing of ecosystem services. Ecological Engineering 189: 106898.
  • Molla, E., Getnet, K., Mekonnen, M., 2022. Land use change and its effect on selected soil properties in the northwest highlands of Ethiopia. Heliyon 8(8): e10157.
  • Mueller, R.C., Paula, F.S., Mirza, B.S., Rodrigues, J.L., Nüsslein, K., Bohannan, B.J., 2014. Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest. The ISME Journal 8(7): 1548-1550.
  • Mukherjee, S., Keswani, K., Nath, P., Paul, S., 2024. A study on the correlation of anthropogenic activities with climate change. Environmental Quality Management 33(4): 59-71.
  • Nadal-Romero, E., Khorchani, M., Gaspar, L., Arnáez, J., Cammeraat, E., Navas, A., Lasanta, T., 2023. How do land use and land cover changes after farmland abandonment affect soil properties and soil nutrients in Mediterranean mountain agroecosystems? Catena 226: 107062.
  • Nave, L.E., DeLyser, K., Domke, G.M., Holub, S.M., Janowiak, M.K., Keller, A.B., Peters, M.P., Solarik, K.A., Walters, B.F., Swanston, C.W., 2024. Land use change and forest management effects on soil carbon stocks in the Northeast US. Carbon Balance and Management 19(1): 5.
  • Nayak, A., Rahman, M.M., Naidu, R., Dhal, B., Swain, C., Nayak, A., Tripathi, R., Shahid, M., Islam, M.R., Pathak, H., 2019. Current and emerging methodologies for estimating carbon sequestration in agricultural soils: A review. Science of the Total Environment 665: 890-912.
  • Nazari, N., 2013. Land use change from pasture to irrigated and dry farming arable land and its effect on soil properties in Miyaneh region, Iran. Journal of Water and Soil Conservation 17: 125-139. in Persian
  • Nwaogu, C., Okeke, O.J., Fashae, O., Nwankwoala, H., 2018. Soil organic carbon and total nitrogen stocks as affected by different land use in an Ultisol in Imo Watershed, southern Nigeria. Chemistry and Ecology 34(9): 854-870.
  • Odelade, K.A., Babalola, O.O., 2019. Bacteria, fungi and archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity. International Journal of Environmental Research and Public Health 16(20): 3873.
  • Padbhushan, R., Kumar, U., Sharma, S., Rana, D., Kumar, R., Kohli, A., Kumari, P., Parmar, B., Kaviraj, M., Sinha, A.K., Annapurna, K., Gupta, V.V.S.R., 2022. Impact of land-use changes on soil properties and carbon pools in India: A meta-analysis. Frontiers in Environmental Science 9: 794866.
  • Payen, F.T., Sykes, A., Aitkenhead, M., Alexander, P., Moran, D., MacLeod, M., 2020. Soil organic carbon sequestration rates in vineyard agroecosystems under different soil management practices: A meta-analysis. Journal of Cleaner Production 290: 125736.
  • Peperzak, P., Caldwell, A., Hunziker, R., Black, C., 1959. Phosphorus fractions in manures. Soil Science 87(5): 293-302.
  • Qi, Y., Chen, T., Pu, J., Yang, F., Shukla, M.K., Chang, Q., 2018. Response of soil physical, chemical and microbial biomass properties to land use changes in fixed desertified land. Catena 160: 339-344.
  • Qiu, K., Xie, Y., Xu, D., Pott, R., 2018. Ecosystem functions including soil organic carbon, total nitrogen and available potassium are crucial for vegetation recovery. Scientific Reports 8: 7606.
  • Rad, M.H., Ebrahimi, M., Shirmohammadi, E., 2018. Land use change effects on plant and soil properties in a mountainous region of Iran. Journal of Environmental Science and Management 21(2):47-56.
  • Raiesi, F., Beheshti, A., 2022. Evaluating forest soil quality after deforestation and loss of ecosystem services using network analysis and factor analysis techniques. Catena 208: 105778.
  • Ramesh, T., Bolan, N.S., Kirkham, M.B., Wijesekara, H., Kanchikerimath, M., Rao, C.S., Sandeep, S., Rinklebe, J., Ok, Y.S., Choudhury, B.U., Wang, H., Tang, C., Wang, X., Song, Z., Oliver, W., Freeman II, O.W., 2019. Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Advances in Agronomy 156: 1-107.
  • Rasouli-Sadaghiani, M., Barin, M., Moghaddam, S.S., Damalas, C., Ghodrat, K., 2018. Soil quality of an Iranian forest ecosystem after conversion to various types of land use. Environmental Monitoring and Assessment 190: 447.
  • Rayment, G.E., Lyons, D.J., 2011. Soil chemical methods: Australasia. CSIRO publishing. 495p.
  • Rezapour, S., Alipour, O., 2017. Effect of deforestation on fertility attributes of Mollisols in the NW of Iran. Chemistry and Ecology 33(3): 213-228.
  • Saurabh, K., Rao, K., Mishra, J., Kumar, R., Poonia, S., Samal, S., Roy, H., Dubey, A., Choubey, A.K., Mondal, S., 2021. Influence of tillage based crop establishment and residue management practices on soil quality indices and yield sustainability in rice-wheat cropping system of Eastern Indo-Gangetic Plains. Soil and Tillage Research 206: 104841.
  • Smith, P., Soussana, J.F., Angers, D., Schipper, L., Chenu, C., Rasse, D.P., Batjes, N.H., Van Egmond, F., McNeill, S., Kuhnert, M., Arias-Navarro, C., Olesen, J.E., Chirinda, N., Fornara, D., Wollenberg, E., Álvaro-Fuentes, J., Sanz-Cobena, A., Klumpp, K., 2020. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology 26(1): 219-241.
  • Soleimani, A., Hosseini, S.M., Bavani, A.R.M., Jafari, M., Francaviglia, R., 2019. Influence of land use and land cover change on soil organic carbon and microbial activity in the forests of northern Iran. Catena 177: 227-237.
  • Sui, X., Zhang, R., Frey, B., Yang, L., Li, M.-H., Ni, H., 2019. Land use change effects on diversity of soil bacterial, Acidobacterial and fungal communities in wetlands of the Sanjiang Plain, northeastern China. Scientific Reports 9: 18535.
  • Szymański, W., Maciejowski, W., Ostafin, K., Ziaja, W., Sobucki, M., 2019. Impact of parent material, vegetation cover, and site wetness on variability of soil properties in proglacial areas of small glaciers along the northeastern coast of Sørkappland (SE Spitsbergen). Catena 183: 104209.
  • Tellen, V.A., Yerima, B.P., 2018. Effects of land use change on soil physicochemical properties in selected areas in the North West region of Cameroon. Environmental Systems Research 7: 3.
  • Telo da Gama, J., Loures, L., Lopez-Piñeiro, A., Quintino, D., Ferreira, P., Nunes, J.R., 2021. Assessing the long-term impact of traditional agriculture and the mid-term impact of intensification in face of local climatic changes. Agriculture 11(9): 814.
  • Teramage, M.T., Asfaw, M., Demissie, A., Feyissa, A., Ababu, T., Gonfa, Y., Sime, G., 2023. Effects of land use types on the depth distribution of selected soil properties in two contrasting agro-climatic zones. Heliyon 9(6): e17354.
  • Tiefenbacher, A., Sandén, T., Haslmayr, H.-P., Miloczki, J., Wenzel, W., Spiegel, H., 2021. Optimizing carbon sequestration in croplands: A Synthesis. Agronomy 11(5): 882.
  • Varamesh, S., Hosseini, S.M., Behjou, F.K., Fataei, E., 2014. The impact of land afforestation on carbon stocks surrounding Tehran, Iran. Journal of Forestry Research 25(1): 135-141.
  • Varasteh Khanlari, Z., Golchin, A., Alamdari, P., Mosavi Kupar, S.A., 2019. The effects of changing forest land to paddy field on the physical and chemical properties of the soil and determining sensitive ındices to land use change. Iranian Journal of Soil and Water Research 50(8): 1911-1925.
  • Voltr, V., Menšík, L., Hlisnikovský, L., Hruška, M., Pokorný, E., Pospíšilová, L., 2021. The soil organic matter in connection with soil properties and soil inputs. Agronomy 11(4): 779.
  • Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37(1): 29-38.
  • Wang, M., Chen, H., Zhang, W., Wang, K., 2018. Soil nutrients and stoichiometric ratios as affected by land use and lithology at county scale in a karst area, southwest China. Science of the Total Environment 619-620: 1299-1307.
  • Wang, Y., Chen, L., Xiang, W., Ouyang, S., Zhang, T., Zhang, X., Zeng, Y., Hu, Y., Luo, G., Kuzyakov, Y., 2021. Forest conversion to plantations: A meta‐analysis of consequences for soil and microbial properties and functions. Global Change Biology 27(21): 5643-5656.
  • Wasige, J.E., Groen, T.A., Rwamukwaya, B.M., Tumwesigye, W., Smaling, E.M.A., Jetten, V., 2014. Contemporary land use/land cover types determine soil organic carbon stocks in south-west Rwanda. Nutrient Cycling in Agroecosystems 100(1): 19-33.
  • Wehr, N.H., 2018. Responses of soil invertebrate and bacterial communities to the removal of nonnative feral pigs (Sus scrofa) from a Hawaiian tropical montane wet forest. Master Thesis, University of Hawai'i at Manoa. Natural Resources & Environmental Management (Ecology, Evolution, & Conservation Biology). 99p.
  • Wei, L., Ge, T., Zhu, Z., Luo, Y., Yang, Y., Xiao, M., Yan, Z., Li, Y., Wu, J., Kuzyakov, Y., 2021. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma 398: 115121.
  • Wu, X., Xu, H., Tuo, D., Wang, C., Fu, B., Lv, Y., Liu, G., 2020. Land use change and stand age regulate soil respiration by influencing soil substrate supply and microbial community. Geoderma 359: 113991.
  • Wu, Y., Zhou, H., Chen, W., Zhang, Y., Wang, J., Liu, H., Zhao, Z., Li, Y., You, Q., Yang, B., Liu, G., Xue, S., 2021. Response of the soil food web to warming and litter removal in the Tibetan Plateau, China. Geoderma 401: 115318.
  • Yadav, G.S., Das, A., Babu, S., Mohapatra, K.P., Lal, R., Rajkhowa, D., 2021. Potential of conservation tillage and altered land configuration to improve soil properties, carbon sequestration and productivity of maize based cropping system in eastern Himalayas, India. International Soil and Water Conservation Research 9(2): 279-290.
  • Yang, Y., Cheng, H., Liu, L., Dou, Y., An, S., 2020. Comparison of soil microbial community between planted woodland and natural grass vegetation on the Loess Plateau. Forest Ecology and Management 460: 117817.
  • Yang, Z., Ohno, T., Singh, B., 2024. Effect of land use change on molecular composition and concentration of organic matter in an oxisol. Environmental Science & Technology 58(29): 13169–13170.
  • Yellajosula, G., Cihacek, L., Faller, T., Schauer, C., 2020. Soil carbon change due to land conversion to grassland in a semi-arid environment. Soil Systems 4(3): 43.
  • Zarafshar, M., Bazot, S., Matinizadeh, M., Bordbar, S.K., Rousta, M.J., Kooch, Y., Enayati, K., Abbasi, A., Negahdarsaber, M., 2020. Do tree plantations or cultivated fields have the same ability to maintain soil quality as natural forests? Applied Soil Ecology 151: 103536.
  • Zdruli, P., Lal, R., Cherlet, M., Kapur, S., 2017. New world atlas of desertification and issues of carbon sequestration, organic carbon stocks, nutrient depletion and implications for food security. In: Carbon management, technologies, and trends in mediterranean ecosystems. Erşahin, S., Kapur, S., Akça, E., Namlı, A., Erdoğan, H. (Eds.). Springer, Cham. pp. 13-25.
  • Zhang, J., Wang, Y., Dai, J., Xu, H., 2022. How does tillage accelerate soil production and enhance soil organic carbon stocks in mudstone and shale outcrop regions?, In: Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F. (Eds.). Advances in understanding soil degradation. Springer, Cham. pp. 245-255.
  • Zhao, X., Tong, M., He, Y., Han, X., Wang, L., 2021. A comprehensive, locally adapted soil quality indexing under different land uses in a typical watershed of the eastern Qinghai-Tibet Plateau. Ecological Indicators 125: 107445.
  • Zheng, Q., Hu, Y., Zhang, S., Noll, L., Böckle, T., Richter, A., Wanek, W., 2019. Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biology and Biochemistry 128: 45-55.

Changing soil characteristics as affected by different land uses in a humid region, west of Iran

Year 2025, , 9 - 21, 01.01.2025
https://doi.org/10.18393/ejss.1564167

Abstract

Land use change, mostly from forest to conventional agriculture, has a detrimental impact on soil health and production. However, the impact of such LUC on soil biological characteristics is unknown. This study aimed to evaluate some of the physicochemical and biological properties of soil with varied land uses in the southwestern Khorramabad area. The research locations comprised diverse land use types including coniferous forest, broadleaf forest, farmland, and rangeland. According to the findings, there was no significant variation in bulk density (ρb) and bulk density at 33 kPa (ρb33) for various land uses, but there was a significant difference between different soil layers. The amount of clay and silt varies dramatically across land uses. However, the quantity of sand used did not differ significantly across the usage (p <0.05). The results showed that the highest and lowest values of soil pH were observed in the coniferous forest and rangeland, respectively. Although the EC in coniferous forests was greater (0.17 dS m-1) than in other land uses, there was no significant difference in the average soil EC in various land uses (p <0.01). In terms of soil organic carbon (SOC), the greatest value was found in broadleaf forests with an average of 1.517 (ton/ha), while the lowest content was observed in farmland with an average of 0.797 (ton/ha). The findings showed that there is a significant difference in soil nitrogen averages across different land uses followed by the decreasing order of broadleaf forest (0.11%)> rangeland (0.06%)> Farmland (0.05%)> coniferous forest (0.03%). The findings also suggested that the quantity of microbial respiration has considerably declined in all locations as land use has shifted from forest to pasture and farmland. Notably, farmland includes the greatest population of fungi, bacteria, and actinomycetes, with a significant difference from other uses (p <0.01). Additionally, the relationship between OC and other soil factors is the most significant in this study.

References

  • Aguilera-Huertas, J., Lozano-García, B., González-Rosado, M., Parras-Alcántara, L., 2021. Effects of management and hillside position on soil organic carbon stratification in mediterranean centenary olive grove. Agronomy 11(4): 650.
  • Amighi, S.J., Asgari, H., Sheikh, V.B., Sardo, M.S., 2013. Effects of agroforestry systems on carbon sequestration and improvement soil quality. International Journal of Agriculture 3(4): 822.
  • Aminiyan, M.M., Hosseini, H., Heydariyan, A., 2018. Microbial communities and their characteristics in a soil amended by nanozeolite and some plant residues: Short time in-situ incubation. Eurasian Journal of Soil Science 7(1): 9-19.
  • Aminiyan, M.M., Shorafa, M., Pourbabaee, A.A., 2024. Mitigating the detrimental impacts of low-and high-density polyethylene microplastics using a novel microbial consortium on a soil-plant system: Insights and interactions. Ecotoxicology and Environmental Safety 283: 116805.
  • Aminiyan, M.M., Sinegani, A.A.S., Sheklabadi, M., 2015a. Aggregation stability and organic carbon fraction in a soil amended with some plant residues, nanozeolite, and natural zeolite. International Journal of Recycling of Organic Waste in Agriculture 4(1): 11-22.
  • Aminiyan, M.M., Sinegani, A.A.S., Sheklabadi, M., 2015b. Assessment of changes in different fractions of the organic carbon in a soil amended by nanozeolite and some plant residues: incubation study. International Journal of Recycling of Organic Waste in Agriculture 4(4): 239-247.
  • Aminiyan, M.M., Sinegani, A.A.S., Sheklabadi, M., 2016. The effect of zeolite and some plant residues on soil organic carbon changes in density and soluble fractions: Incubation study. Eurasian Journal of Soil Science 5(1): 74-83.
  • Antón, R., Ruiz-Sagaseta, A., Orcaray, L., Arricibita, F.J., Enrique, A., Soto, I.d., Virto, I., 2021. Soil water retention and soil compaction assessment in a regional-scale strategy to improve climate change adaptation of agriculture in Navarre, Spain. Agronomy 11(3): 607.
  • Aryal, J.P., Sapkota, T.B., Khurana, R., Khatri-Chhetri, A., 2020. Climate change mitigation options among farmers in South Asia. Environment, Development and Sustainability 22(4): 3267-3289.
  • Asmare, T.K., Abayneh, B., Yigzaw, M., Birhan, T.A., 2023. The effect of land use type on selected soil physicochemical properties in Shihatig watershed, Dabat district, Northwest Ethiopia. Heliyon 9(5): e16038
  • Augusto, L., Achat, D.L., Jonard, M., Vidal, D., Ringeval, B., 2017. Soil parent material—A major driver of plant nutrient limitations in terrestrial ecosystems. Global Change Biology 23(9): 3808-3824.
  • Azizi, P., Soltani, A., Bagheri, F., Sharifi, S., Mikaeili, M., 2022. An integrated modelling approach to urban growth and land use/cover change. Land 11(10): 1715.
  • Babur, E., Dindaroğlu, T., Solaiman, Z.M., Battaglia, M.L., 2021. Microbial respiration, microbial biomass and activity are highly sensitive to forest tree species and seasonal patterns in the Eastern Mediterranean Karst Ecosystems. Science of the Total Environment 775: 145868.
  • Bakhshandeh, E., Hossieni, M., Zeraatpisheh, M., Francaviglia, R., 2019. Land use change effects on soil quality and biological fertility: a case study in northern Iran. European Journal of Soil Biology 95: 103119.
  • Barati, A.A., Zhoolideh, M., Azadi, H., Lee, J.-H., Scheffran, J., 2023. Interactions of land-use cover and climate change at global level: How to mitigate the environmental risks and warming effects. Ecological Indicators 146: 109829.
  • Barnett, S.E., Youngblut, N.D., Buckley, D.H., 2020. Soil characteristics and land-use drive bacterial community assembly patterns. FEMS Microbiology Ecology 96(1): fiz194.
  • Basheer, S., Wang, X., Farooque, A.A., Nawaz, R.A., Pang, T., Neokye, E.O., 2024. A review of greenhouse gas emissions from agricultural soil. Sustainability 16(11): 4789.
  • Benslama, A., Benbrahim, F., Navarro-Pedreño, J., Lucas, I.G., Vidal, M.M.J., Almendro-Candel, M.B., 2024. Organic carbon management and the relations with climate change. In: Frontier Studies in Soil Science. Núñez-Delgado, A. (Ed.). Springer, Cham. pp. 109-133.
  • Boroumand, M., Ghajar Sepalnou, M., Bahmanyar, M.A., Salek Gilani, S., 2015. Evaluation of the effects of land use change from forest areas into agricultural lands on some chemical properties of soil (Case Study: Zarin Abad, Sari, Iran). Physical Geography Research Quarterly 47(3): 435-449.
  • Bremner, J.M., 1996. Nitrogen-total. In: Methods of Soil Analysis: Part 3 Chemical Methods, 5.3. Sparks, D.L. Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.). SSSA Book Series No. 5. ASA-SSSA Madison WI, USA, pp. 1085– 1121.
  • Clerici, N., Cote-Navarro, F., Escobedo, F.J., Rubiano, K., Villegas, J.C., 2019. Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Science of the Total Environment 685: 1181-1192.
  • da Cunha, E.R., Santos, C.A.G., da Silva, R.M., Panachuki, E., de Oliveira, P.T.S., de Souza Oliveira, N., dos Santos Falcão, K., 2021. Assessment of current and future land use/cover changes in soil erosion in the Rio da Prata basin (Brazil). Science of The Total Environment 818: 151811.
  • De Stefano, A., Jacobson, M.G., 2018. Soil carbon sequestration in agroforestry systems: a meta-analysis. Agroforestry Systems 92(2): 285-299.
  • Deveau, A., Bonito, G., Uehling, J., Paoletti, M., Becker, M., Bindschedler, S., Hacquard, S., Hervé, V., Labbé, J., Lastovetsky, O.A., 2018. Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiology Reviews 42(3): 335-352.
  • Diwediga, B., Le, Q.B., Agodzo, S., Wala, K., 2017. Potential storages and drivers of soil organic carbon and total nitrogen across river basin landscape: The case of Mo river basin (Togo) in West Africa. Ecological Engineering 99: 298-309.
  • Ekka, P., Patra, S., Upreti, M., Kumar, G., Kumar, A., Saikia, P., 2023. Land Degradation and its impacts on biodiversity and ecosystem services. In: Land and Environmental Management through Forestry. Raj, A., Jhariya, M.K., Banerjee, A., Nerma, S., Bargali, K. (Eds.). Wiley & Sons. Inc. pp. 77-101.
  • Eze, S., Magilton, M., Magnone, D., Varga, S., Gould, I., Mercer, T.G., Goddard, M.R., 2023. Meta-analysis of global soil data identifies robust indicators for short-term changes in soil organic carbon stock following land use change. Science of the Total Environment 860: 160484.
  • Fan, L., Han, W., 2020. Soil respiration after forest conversion to tea gardens: A chronosequence study. Catena 190: 104532.
  • Fenton, T., Brown, J., Mausbach, M., 2018. Effects of long-term cropping on organic matter content of soils: implications for soil quality. In: Soil quality and soil erosion. Lal, R. (Ed.). CRC Press, pp. 95-124.
  • Fernández-Bravo, M., Gschwend, F., Mayerhofer, J., Hug, A., Widmer, F., Enkerli, J., 2021. Land-use type drives soil population structures of the entomopathogenic fungal genus Metarhizium. Microorganisms 9(7): 1380.
  • Gaël, M.O.R., Neil-Yohan, M., Alexis, N., Jeremy, S., Davi-Lin, M.E., Guirema, A.M., Aubin, O.J., Eric, R., Michel, M.M., 2021. Carbon and nitrogen stocks under various land cover in Gabon. Geoderma Regional 25: e00363.
  • Gebresamuel, G., Molla, B., Teka, K., Negash, E., Haile, M., Okolo, C.C., 2022. Changes in soil organic carbon stock and nutrient status after conversion of pasture land to cultivated land in semi-arid areas of northern Ethiopia. Archives of Agronomy and Soil Science 68(1): 44-60.
  • Gee, G.W., Or, D., 2002. Particle-size analysis. In: Methods of Soil Analysis: Part 4 Physical Methods, 5.4. Dane, J.H., Topp G.C. (Eds.), SSSA Book Series. Soil Science Society of America, Madison, Wisconsin, USA. pp. 255–293.
  • Hajabbasi, M., Basalatpour, A., Maleki, A., 2007. Effect of shifting rangeland to farmland on some physical and chemical properties of south and southwest soils of Isfahan. Journal of Scince Technology of Agriculture Natural Resource 11(42): 525-534. in Persian
  • Hasanpori, R., Sepehry, A., Barani, H., 2020. Effect of Rangeland Conversion to Dryland Farming on Soil Chemical Properties (Case study: Kian rangelands, Lorestan, Iran). Journal of Rangeland Science 10(1): 49-56. in Persian
  • Hashemi Rad, S., Kiani, F., Meftah Helghi, M., Hematzadeh, Y., 2018. Effect of land use on physical and chemical parameters of soil and sediment in Qarnave and Yelcheshme watersheds, Golestan Province, Iran. Environmental Resources Research 6(2): 89-102.
  • Isermeyer, H., 1952. Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Boden. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 56(1-3): 26-38.
  • Jahangir, M.M.R., Islam, S., Nitu, T.T., Uddin, S., Kabir, A.K.M.A., Meah, M.B., Islam, R., 2021. Bio-compost-based integrated soil fertility management improves post-harvest soil structural and elemental quality in a two-year conservation agriculture practice. Agronomy 11(11): 2101.
  • Japelaghi, M., Gholamalifard, M., Shayesteh, K., 2019. Spatio-temporal analysis and prediction of landscape patterns and change processes in the Central Zagros region, Iran. Remote Sensing Applications: Society and Environment 15: 100244.
  • Kern, J.S., 1994. Spatial patterns of soil organic carbon in the contiguous United States. Soil Science Society of America Journal 58(2): 439-455.
  • Khormali, F., Shamsi, S., 2009. Investigation of the quality and micromorphology of soil evolution in different landuses of a loess hillslope of Golestan province, a case study in Ghapan region. Journal of Agricultural Sciences and Natural Resources 16(3): 14-26.
  • Kim, D.G., Kirschbaum, M.U., Eichler-Löbermann, B., Gifford, R.M., Liáng, L.L., 2023. The effect of land-use change on soil C, N, P, and their stoichiometries: A global synthesis. Agriculture, Ecosystems & Environment 348: 108402.
  • Kooch, Y., Ghorbanzadeh, N., Haghverdi, K., Francaviglia, R., 2023. Soil quality cannot be improved after thirty years of land use change from forest to rangeland. Science of The Total Environment 856: 159132.
  • Kooch, Y., Mehr, M.A., Hosseini, S.M., 2021a. Soil biota and fertility along a gradient of forest degradation in a temperate ecosystem. Catena 204: 105428.
  • Kooch, Y., Piri, A.S., Tilaki, G.A.D., 2021b. Tree cover mediate indices related to the content of organic matter and the size of microbial population in semi-arid ecosystems. Journal of Environmental Management 285: 112144.
  • Kopittke, P.M., Dalal, R.C., McKenna, B.A., Smith, P., Wang, P., Weng, Z., van der Bom, F.J., Menzies, N.W., 2024. Soil is a major contributor to global greenhouse gas emissions and climate change. EGUsphere 1-18.
  • Li, H., Yao, Y., Zhang, X., Zhu, H., Wei, X., 2021. Changes in soil physical and hydraulic properties following the conversion of forest to cropland in the black soil region of Northeast China. Catena 198: 104986.
  • Li, Z., Liu, C., Dong, Y., Chang, X., Nie, X., Liu, L., Xiao, H., Lu, Y., Zeng, G., 2017. Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly–gully region of China. Soil and Tillage Research 166: 1-9.
  • Liu, J., Liu, X., Lyu, M., Wang, J., Li, Y., Guo, J., 2021. Changes in soil carbon and nitrogen stocks and microbial community after forest conversion in a subtropical region. Scandinavian Journal of Forest Research 36(7-9): 575-584.
  • Liu, M., Chen, Y., Chen, K., Chen, Y., 2023. Progress and hotspots of research on land-use carbon emissions: A global perspective. Sustainability 15(9): 7245.
  • Liu, X., Lie, Z., Reich, P.B., Zhou, G., Yan, J., Huang, W., Wang, Y., Peñuelas, J., Tissue, D.T., Zhao, M., Wu, T., Wu, D., Xu, W., Li, Y., Tang, X., Zhou, S., Meng, Z., Liu, S., Chu, G., Zhang, D., Zhang, Q., He, X., Liu, J., 2024. Long‐term warming increased carbon sequestration capacity in a humid subtropical forest. Global Change Biology 30(1): e17072.
  • Luo, D., Cheng, R.-M., Liu, S., Shi, Z.-M., Feng, Q.-H., 2020. Responses of soil microbial community composition and enzyme activities to land-use change in the eastern Tibetan Plateau, China. Forests 11(5): 483.
  • Ma, S., Wang, L.-J., Jiang, J., Zhao, Y.-G., 2024. Land use/land cover change and soil property variation increased flood risk in the black soil region, China, in the last 40 years. Environmental Impact Assessment Review 104: 107314.
  • Manral, V., Bargali, K., Bargali, S., Shahi, C., 2020. Changes in soil biochemical properties following replacement of Banj oak forest with Chir pine in Central Himalaya, India. Ecological Processes 9: 30.
  • Matano, A.-S., Kanangire, C.K., Anyona, D.N., Abuom, P.O., Gelder, F.B., Dida, G.O., Owuor, P.O., Ofulla, A.V., 2015. Effects of land use change on land degradation reflected by soil properties along Mara River, Kenya and Tanzania. Open Journal of Soil Science 5(1): 20-38.
  • McGowan, A.R., Nicoloso, R.S., Diop, H.E., Roozeboom, K.L., Rice, C.W., 2019. Soil organic carbon, aggregation, and microbial community structure in annual and perennial biofuel crops. Agronomy Journal 111(1): 128-142.
  • Mirghaed, F.A., Souri, B., 2023. Contribution of land use, soil properties and topographic features for providing of ecosystem services. Ecological Engineering 189: 106898.
  • Molla, E., Getnet, K., Mekonnen, M., 2022. Land use change and its effect on selected soil properties in the northwest highlands of Ethiopia. Heliyon 8(8): e10157.
  • Mueller, R.C., Paula, F.S., Mirza, B.S., Rodrigues, J.L., Nüsslein, K., Bohannan, B.J., 2014. Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest. The ISME Journal 8(7): 1548-1550.
  • Mukherjee, S., Keswani, K., Nath, P., Paul, S., 2024. A study on the correlation of anthropogenic activities with climate change. Environmental Quality Management 33(4): 59-71.
  • Nadal-Romero, E., Khorchani, M., Gaspar, L., Arnáez, J., Cammeraat, E., Navas, A., Lasanta, T., 2023. How do land use and land cover changes after farmland abandonment affect soil properties and soil nutrients in Mediterranean mountain agroecosystems? Catena 226: 107062.
  • Nave, L.E., DeLyser, K., Domke, G.M., Holub, S.M., Janowiak, M.K., Keller, A.B., Peters, M.P., Solarik, K.A., Walters, B.F., Swanston, C.W., 2024. Land use change and forest management effects on soil carbon stocks in the Northeast US. Carbon Balance and Management 19(1): 5.
  • Nayak, A., Rahman, M.M., Naidu, R., Dhal, B., Swain, C., Nayak, A., Tripathi, R., Shahid, M., Islam, M.R., Pathak, H., 2019. Current and emerging methodologies for estimating carbon sequestration in agricultural soils: A review. Science of the Total Environment 665: 890-912.
  • Nazari, N., 2013. Land use change from pasture to irrigated and dry farming arable land and its effect on soil properties in Miyaneh region, Iran. Journal of Water and Soil Conservation 17: 125-139. in Persian
  • Nwaogu, C., Okeke, O.J., Fashae, O., Nwankwoala, H., 2018. Soil organic carbon and total nitrogen stocks as affected by different land use in an Ultisol in Imo Watershed, southern Nigeria. Chemistry and Ecology 34(9): 854-870.
  • Odelade, K.A., Babalola, O.O., 2019. Bacteria, fungi and archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity. International Journal of Environmental Research and Public Health 16(20): 3873.
  • Padbhushan, R., Kumar, U., Sharma, S., Rana, D., Kumar, R., Kohli, A., Kumari, P., Parmar, B., Kaviraj, M., Sinha, A.K., Annapurna, K., Gupta, V.V.S.R., 2022. Impact of land-use changes on soil properties and carbon pools in India: A meta-analysis. Frontiers in Environmental Science 9: 794866.
  • Payen, F.T., Sykes, A., Aitkenhead, M., Alexander, P., Moran, D., MacLeod, M., 2020. Soil organic carbon sequestration rates in vineyard agroecosystems under different soil management practices: A meta-analysis. Journal of Cleaner Production 290: 125736.
  • Peperzak, P., Caldwell, A., Hunziker, R., Black, C., 1959. Phosphorus fractions in manures. Soil Science 87(5): 293-302.
  • Qi, Y., Chen, T., Pu, J., Yang, F., Shukla, M.K., Chang, Q., 2018. Response of soil physical, chemical and microbial biomass properties to land use changes in fixed desertified land. Catena 160: 339-344.
  • Qiu, K., Xie, Y., Xu, D., Pott, R., 2018. Ecosystem functions including soil organic carbon, total nitrogen and available potassium are crucial for vegetation recovery. Scientific Reports 8: 7606.
  • Rad, M.H., Ebrahimi, M., Shirmohammadi, E., 2018. Land use change effects on plant and soil properties in a mountainous region of Iran. Journal of Environmental Science and Management 21(2):47-56.
  • Raiesi, F., Beheshti, A., 2022. Evaluating forest soil quality after deforestation and loss of ecosystem services using network analysis and factor analysis techniques. Catena 208: 105778.
  • Ramesh, T., Bolan, N.S., Kirkham, M.B., Wijesekara, H., Kanchikerimath, M., Rao, C.S., Sandeep, S., Rinklebe, J., Ok, Y.S., Choudhury, B.U., Wang, H., Tang, C., Wang, X., Song, Z., Oliver, W., Freeman II, O.W., 2019. Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Advances in Agronomy 156: 1-107.
  • Rasouli-Sadaghiani, M., Barin, M., Moghaddam, S.S., Damalas, C., Ghodrat, K., 2018. Soil quality of an Iranian forest ecosystem after conversion to various types of land use. Environmental Monitoring and Assessment 190: 447.
  • Rayment, G.E., Lyons, D.J., 2011. Soil chemical methods: Australasia. CSIRO publishing. 495p.
  • Rezapour, S., Alipour, O., 2017. Effect of deforestation on fertility attributes of Mollisols in the NW of Iran. Chemistry and Ecology 33(3): 213-228.
  • Saurabh, K., Rao, K., Mishra, J., Kumar, R., Poonia, S., Samal, S., Roy, H., Dubey, A., Choubey, A.K., Mondal, S., 2021. Influence of tillage based crop establishment and residue management practices on soil quality indices and yield sustainability in rice-wheat cropping system of Eastern Indo-Gangetic Plains. Soil and Tillage Research 206: 104841.
  • Smith, P., Soussana, J.F., Angers, D., Schipper, L., Chenu, C., Rasse, D.P., Batjes, N.H., Van Egmond, F., McNeill, S., Kuhnert, M., Arias-Navarro, C., Olesen, J.E., Chirinda, N., Fornara, D., Wollenberg, E., Álvaro-Fuentes, J., Sanz-Cobena, A., Klumpp, K., 2020. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology 26(1): 219-241.
  • Soleimani, A., Hosseini, S.M., Bavani, A.R.M., Jafari, M., Francaviglia, R., 2019. Influence of land use and land cover change on soil organic carbon and microbial activity in the forests of northern Iran. Catena 177: 227-237.
  • Sui, X., Zhang, R., Frey, B., Yang, L., Li, M.-H., Ni, H., 2019. Land use change effects on diversity of soil bacterial, Acidobacterial and fungal communities in wetlands of the Sanjiang Plain, northeastern China. Scientific Reports 9: 18535.
  • Szymański, W., Maciejowski, W., Ostafin, K., Ziaja, W., Sobucki, M., 2019. Impact of parent material, vegetation cover, and site wetness on variability of soil properties in proglacial areas of small glaciers along the northeastern coast of Sørkappland (SE Spitsbergen). Catena 183: 104209.
  • Tellen, V.A., Yerima, B.P., 2018. Effects of land use change on soil physicochemical properties in selected areas in the North West region of Cameroon. Environmental Systems Research 7: 3.
  • Telo da Gama, J., Loures, L., Lopez-Piñeiro, A., Quintino, D., Ferreira, P., Nunes, J.R., 2021. Assessing the long-term impact of traditional agriculture and the mid-term impact of intensification in face of local climatic changes. Agriculture 11(9): 814.
  • Teramage, M.T., Asfaw, M., Demissie, A., Feyissa, A., Ababu, T., Gonfa, Y., Sime, G., 2023. Effects of land use types on the depth distribution of selected soil properties in two contrasting agro-climatic zones. Heliyon 9(6): e17354.
  • Tiefenbacher, A., Sandén, T., Haslmayr, H.-P., Miloczki, J., Wenzel, W., Spiegel, H., 2021. Optimizing carbon sequestration in croplands: A Synthesis. Agronomy 11(5): 882.
  • Varamesh, S., Hosseini, S.M., Behjou, F.K., Fataei, E., 2014. The impact of land afforestation on carbon stocks surrounding Tehran, Iran. Journal of Forestry Research 25(1): 135-141.
  • Varasteh Khanlari, Z., Golchin, A., Alamdari, P., Mosavi Kupar, S.A., 2019. The effects of changing forest land to paddy field on the physical and chemical properties of the soil and determining sensitive ındices to land use change. Iranian Journal of Soil and Water Research 50(8): 1911-1925.
  • Voltr, V., Menšík, L., Hlisnikovský, L., Hruška, M., Pokorný, E., Pospíšilová, L., 2021. The soil organic matter in connection with soil properties and soil inputs. Agronomy 11(4): 779.
  • Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37(1): 29-38.
  • Wang, M., Chen, H., Zhang, W., Wang, K., 2018. Soil nutrients and stoichiometric ratios as affected by land use and lithology at county scale in a karst area, southwest China. Science of the Total Environment 619-620: 1299-1307.
  • Wang, Y., Chen, L., Xiang, W., Ouyang, S., Zhang, T., Zhang, X., Zeng, Y., Hu, Y., Luo, G., Kuzyakov, Y., 2021. Forest conversion to plantations: A meta‐analysis of consequences for soil and microbial properties and functions. Global Change Biology 27(21): 5643-5656.
  • Wasige, J.E., Groen, T.A., Rwamukwaya, B.M., Tumwesigye, W., Smaling, E.M.A., Jetten, V., 2014. Contemporary land use/land cover types determine soil organic carbon stocks in south-west Rwanda. Nutrient Cycling in Agroecosystems 100(1): 19-33.
  • Wehr, N.H., 2018. Responses of soil invertebrate and bacterial communities to the removal of nonnative feral pigs (Sus scrofa) from a Hawaiian tropical montane wet forest. Master Thesis, University of Hawai'i at Manoa. Natural Resources & Environmental Management (Ecology, Evolution, & Conservation Biology). 99p.
  • Wei, L., Ge, T., Zhu, Z., Luo, Y., Yang, Y., Xiao, M., Yan, Z., Li, Y., Wu, J., Kuzyakov, Y., 2021. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma 398: 115121.
  • Wu, X., Xu, H., Tuo, D., Wang, C., Fu, B., Lv, Y., Liu, G., 2020. Land use change and stand age regulate soil respiration by influencing soil substrate supply and microbial community. Geoderma 359: 113991.
  • Wu, Y., Zhou, H., Chen, W., Zhang, Y., Wang, J., Liu, H., Zhao, Z., Li, Y., You, Q., Yang, B., Liu, G., Xue, S., 2021. Response of the soil food web to warming and litter removal in the Tibetan Plateau, China. Geoderma 401: 115318.
  • Yadav, G.S., Das, A., Babu, S., Mohapatra, K.P., Lal, R., Rajkhowa, D., 2021. Potential of conservation tillage and altered land configuration to improve soil properties, carbon sequestration and productivity of maize based cropping system in eastern Himalayas, India. International Soil and Water Conservation Research 9(2): 279-290.
  • Yang, Y., Cheng, H., Liu, L., Dou, Y., An, S., 2020. Comparison of soil microbial community between planted woodland and natural grass vegetation on the Loess Plateau. Forest Ecology and Management 460: 117817.
  • Yang, Z., Ohno, T., Singh, B., 2024. Effect of land use change on molecular composition and concentration of organic matter in an oxisol. Environmental Science & Technology 58(29): 13169–13170.
  • Yellajosula, G., Cihacek, L., Faller, T., Schauer, C., 2020. Soil carbon change due to land conversion to grassland in a semi-arid environment. Soil Systems 4(3): 43.
  • Zarafshar, M., Bazot, S., Matinizadeh, M., Bordbar, S.K., Rousta, M.J., Kooch, Y., Enayati, K., Abbasi, A., Negahdarsaber, M., 2020. Do tree plantations or cultivated fields have the same ability to maintain soil quality as natural forests? Applied Soil Ecology 151: 103536.
  • Zdruli, P., Lal, R., Cherlet, M., Kapur, S., 2017. New world atlas of desertification and issues of carbon sequestration, organic carbon stocks, nutrient depletion and implications for food security. In: Carbon management, technologies, and trends in mediterranean ecosystems. Erşahin, S., Kapur, S., Akça, E., Namlı, A., Erdoğan, H. (Eds.). Springer, Cham. pp. 13-25.
  • Zhang, J., Wang, Y., Dai, J., Xu, H., 2022. How does tillage accelerate soil production and enhance soil organic carbon stocks in mudstone and shale outcrop regions?, In: Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F. (Eds.). Advances in understanding soil degradation. Springer, Cham. pp. 245-255.
  • Zhao, X., Tong, M., He, Y., Han, X., Wang, L., 2021. A comprehensive, locally adapted soil quality indexing under different land uses in a typical watershed of the eastern Qinghai-Tibet Plateau. Ecological Indicators 125: 107445.
  • Zheng, Q., Hu, Y., Zhang, S., Noll, L., Böckle, T., Richter, A., Wanek, W., 2019. Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biology and Biochemistry 128: 45-55.
There are 106 citations in total.

Details

Primary Language English
Subjects Soil Sciences and Plant Nutrition (Other)
Journal Section Articles
Authors

Pariya Heidari 0009-0004-0874-1599

Mohammad Feizian This is me 0000-0002-0212-3712

Publication Date January 1, 2025
Submission Date March 17, 2024
Acceptance Date September 30, 2024
Published in Issue Year 2025

Cite

APA Heidari, P., & Feizian, M. (2025). Changing soil characteristics as affected by different land uses in a humid region, west of Iran. Eurasian Journal of Soil Science, 14(1), 9-21. https://doi.org/10.18393/ejss.1564167