Research Article
BibTex RIS Cite
Year 2025, , 22 - 37, 01.01.2025
https://doi.org/10.18393/ejss.1565833

Abstract

References

  • Bektayev, N., Mansurova, K., Kaldybayev, S., Pachikin, K., Еrzhanova, K., Absatova, B., 2023. Comprehensive assessment and information database on saline and waterlogged soils in Kazakhstan: Insights from Remote Sensing Technology. Eurasian Journal of Soil Science 12(4): 290 - 299.
  • Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254 (1976).
  • Camacho-Sanchez, M., Barcia-Piedras, J. M., Redondo-Gómez, S., Camacho, M., 2020. Mediterranean seasonality and the halophyte Arthrocnemum macrostachyum determine the bacterial community in salt marsh soils in Southwest Spain. Applied Soil Ecology 151: 103532.
  • Chin, Y.W., Jung, H.A., Liu, Y., Su, B.N., Castoro, J.A., Keller, W.J., Pereira, M.A., Kinghorn, A.D. 2007. Anti-oxidant constituents of the roots and stolons of licorice (Glycyrrhiza glabra). Journal of Agricultural and Food Chemistry 55(12): 4691–4697.
  • Cuevas, J., Daliakopoulos, I.N., del Moral, F., Hueso, J.J., Tsanis, I.K., 2019. A Review of soil-improving cropping systems for soil salinization. Agronomy 9(6): 295.
  • Duan, Y., Ma, L., Abuduwaili, J., Liu, W., Saparov, G., Smanov, Z., 2022. Driving factor ıdentification for the spatial distribution of soil salinity in the irrigation area of the Syr Darya River, Kazakhstan. Agronomy 12(8): 1912.
  • Egamberdieva, D., Mamedov, N.A., 2015. Potential use of licorice in phytoremediation of salt affected soils. In: Plants, Pollutants and Remediation. Öztürk, M., Ashraf, M., Aksoy, A., Ahmad, M.S.A., Hakeem, K.R. (Eds.). Springer, Dordrecht. pp. 309–318.
  • Falasca, S.L., Ulberich, A., Acevedo, A., 2014. Identification of Argentinian saline drylands suitable for growing Salicornia bigelovii for bioenergy. International Journal of Hydrogen Energy 39(16): 8682–8689.
  • Funakawa, S., Suzuki, R., Karbozova, E., Kosaki, T., Ishida, N., 2000. Salt-affected soils under rice-based irrigation agriculture in Southern Kazakhstan. Geoderma 97(1-2): 61–85.
  • GOST 26107-84. Soils. Methods for determination of total nitrogen. Available at Access date: 12.02.2024: https://www.russiangost.com/search.aspx?searchterm=GOST%2026107-84&showPics=1
  • GOST 26205-91. Soils. Determination of mobile compounds of phosphorus and potassium by Machigin method modified by CINAO. Available at Access date: 12.02.2024: https://www.russiangost.com/search.aspx?searchterm=GOST%2026205-91&showPics=1
  • GOST 26213-91. Soils. Methods for determination of organic matter. Available at Access date: 12.02.2024: https://www.russiangost.com/p-52750-gost-26213-91.aspx
  • GOST 26423-85. Soils. Methods for determination of specific electric conductivity, pH and solid residue of water extract. Available at Access date: 12.02.2024: https://www.russiangost.com/search.aspx?searchterm=GOST%2026423-85&showPics=1
  • GOST 26424-85. Soils. Method for determination of carbonate and bicarbonate ions in water extract. Available at Access date: 12.02.2024: https://www.russiangost.com/search.aspx?searchterm=GOST%2026424-85&showPics=1
  • GOST 26425-85. Soils. Methods for determination of chloride ion in water extract. Available at Access date: 12.02.2024: https://www.russiangost.com/search.aspx?searchterm=GOST%2026425-85&showPics=1
  • GOST 26427-85. Soils. Method for determination of sodium and potassium in water extract. Available at Access date: 12.02.2024: https://www.russiangost.com/search.aspx?searchterm=GOST%2026427-85%20&showPics=1
  • GOST 26428-85. Soils. Methods for determination of calcium and magnesium in water extract. Available at Access date: 12.02.2024: https://www.russiangost.com/search.aspx?searchterm=GOST%2026428-85&showPics=1
  • GOST 26487-85. Soils. Determination of exchangeable calcium and exchangeable (mobile) magnesium by CINAO methods. Available at Access date: 12.02.2024: https://www.russiangost.com/p-61441-gost-26487-85.aspx
  • GOST 34467-2018. Soils. Laboratory method for determining carbonate content. Available at Access date: 12.02.2024: https://www.russiangost.com/p-373925-gost-34467-2018.aspx
  • Guo, A., He, D., Xu, H.B., Geng, C.A., Zhao, J., 2015. Promotion of regulatory T cell Induction by immunomodulatory herbal medicine licorice and its two constituents. Scientific Reports 5: 14046.
  • Hayashi, H., Hattori, S., Inoue, K., Khodzhimatov, O., Ashurmetov, O., Ito, M., Honda, G., 2003. field survey of glycyrrhiza plants in central Asia (3). Chemical characterization of G. glabra collected in Uzbekistan. Chemical and Pharmaceutical Bulletin 51(11): 1338–1340.
  • Hayashi, H.; Sudo, H. 2009. Economic importance of licorice. Plant Biotechnology 26(1): 101–104.
  • He, C., Wang, W., Hou, J., 2019. Plant growth and soil microbial ımpacts of enhancing liquorice with inoculating dark septate endophytes under drought stress. Frontiers in Microbiology 10: 2277.
  • Holdt, S.L., Kraan, S., 2011. Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology 23(3): 543–597.
  • Jallali, I., Zaouali, Y., Missaoui, I., Smeoui, A., Abdelly, C., Ksouri, R., 2014. Variability of antioxidant and antibacterial effects of essential oils and acetonic extracts of two edible halophytes: Crithmum maritimum L. and Inula crithmoїdes L.. Food Chemistry 145: 1031-1038.
  • Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A., Aryal, N., 2022. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances 8: 100203.
  • Karakaş, S., Cullu, M.A., Dikilitaş, M., 2017. Comparison of two halophyte species (Salsola soda and Portulaca oleracea) for salt removal potential under diferent soil salinity conditions. Turkish Journal of Agriculture and Forestry 41(3): 183–190.
  • Khaitov, B., Tadjetdinov, N., Sindarov, O., Khaitbaeva, J., Sayimbetov, A., Khakberdiev, O., Nematov, T., 2024. Improving the growth of Glycyrrhiza Glabra L. in saline soils using bioagent seed treatments. Eurasian Journal of Soil Science 13(1): 43 - 51.
  • Khaitov, B., Urmonova, M., Karimov, A., Sulaymonov, B., Allanov, K., Israilov, I., Sottorov, O., 2021. Licorice (Glycyrrhiza glabra)—growth and phytochemical compound secretion in degraded lands under drought stress. Sustainability 13(5): 2923.
  • Kumar, P., Sharma, P.K., 2020. Soil salinity and food security in India. Frontiers in Sustainable Food Systems 4: 533781.
  • Kussainova, M., Spaeth, K., Zhaparkulova, E., 2020. Efficiency of using the rangeland hydrology and erosion model for assessing the degradation of pastures and forage lands in Aydarly, Kazakhstan. Eurasian Journal of Soil Science 9(2): 186 - 193.
  • Laiskhanov, S.U., Otarov, A., Savin, I.Y., Tanirbergenov, S.I., Mamutov, Z.U., Duisekov, S.N., Zhogolev, A., 2016. Dynamics of soil salinity in irrigation areas in South Kazakhstan. Polish Journal of Environmental Studies 25(6): 2469–2476.
  • Li, B., Wang, J., Yao, L., Meng, Y., Ma, X., Si, E., Ren, P., Yang, K., Shang, X., Wang, H., 2019. Halophyte Halogeton glomeratus is a promising candidate for the phytoremediation of heavy metal-contaminated saline soils. Plant and Soil 442(1): 323–331.
  • Liu, W., Ma, L., Smanov, Z., Samarkhanov, K., Abuduwaili, J., 2022. Clarifying soil texture and salinity using local spatial statistics (Getis-Ord Gi* and Moran’s I) in Kazakh–Uzbekistan Border Area, Central Asia. Agronomy 12: 332.
  • Ma, L., Abuduwaili, J., Smanov, Z., Ge, Y., Samarkhanov, K., Saparov, G., Issanova, G., 2019 Spatial and vertical variations and heavy metal enrichments in irrigated soils of the Syr Darya River watershed, Aral Sea Basin, Kazakhstan. International Journal of Environmental Research and Public Health 16(22):4398.
  • Manousaki, E., Kalogerakis, N., 2011. A halophytes-an emerging trend in phytoremediation. International Journal of Phytoremediation 13(10): 959–969.
  • Mohebi, Z., Khalasi Ahwaz, L., Heshmati, G.A., 2021. Comparison of diferent methods to estimate forage production of two shrub species Halocnemum strobilaceum (Pall.) Bieb and Halostachys caspica CA Mey (Case Study: Winter Rangelands of Golestan Province, Iran). Journal of Rangeland Science 11(2): 171–181.
  • Mukhopadhyay, R., Sarkar, B., Jat, H.S., Sharma, P.C., Bolan, N.S., 2021. Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management 280: 111736.
  • Nainwal, R.C., Chaurasiya, P., Kumar, A., Singh, M., Singh, D., Tewari, S.K., 2024. Phytoremediation: A sustainable approach to combat soil salinity. Advances in Environmental and Engineering Research 5(2): 1-11.
  • Otarov, A., 2014. Concentration of heavy metals in irrigated soils in Southern Kazakhstan. In: Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Mueller, L., Saparov, A., Lischeid, G. (Eds.). Environmental Science and Engineering. Springer, Cham. pp 641–652.
  • Öztürk, M., Altay, V., Güvensen, A., 2019. Sustainable use of halophytic taxa as food and fodder: an important genetic resource in Southwest Asia. In: Ecophysiology, abiotic stress responses and utilization of halophytes. Hasanuzzaman, M., Nahar, K., Öztürk , M. (Eds.). Springer, Singapore. pp.235–257.
  • Pachikin, K., Erokhina, O., Funakawa, S., 2014. Soils of Kazakhstan, their distribution and mapping. In: Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Mueller, L., Saparov, A., Lischeid, G. (Eds.). Environmental Science and Engineering. Springer, Cham. pp 519–533.
  • Saparov, A., 2014. Soil resources of the Republic of Kazakhstan: Current status, problems and solutions. In: Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Mueller, L., Saparov, A., Lischeid, G. (Eds.). Environmental Science and Engineering. Springer, Cham. pp 61–73.
  • Shahid, S.A., Zaman, M., Heng, L., 2018. Soil salinity: Historical perspectives and a world overview of the problem. In: Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Shahid, S.A., Zaman, M., Heng, L. (Eds.). Springer, Cham. pp. 43–53.
  • Shaygan, M., Baumgartl, T., 2022. Reclamation of salt-affected land: A review. Soil Systems 6(3): 61.
  • Sherene, T., 2010. Mobility and transport of heavy metals in the polluted soil environment. Biological Forum- An International Journal 2(2): 112–121 (2010).
  • Shrivastava, P., Kumar, R., 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences 22(2): 123-131.
  • Singh, D., Buhmann, A.K., Flowers, T.J., Seal, C.E., Papenbrock, J., 2014. Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions. AoB PLANTS 6: plu071.
  • Song, J., Feng, G., Zhang, F., 2006. Salinity and temperature effects on germination for three salt-resistant euhalophytes, Halostachys caspica, Kalidium foliatum and Halocnemum strobilaceum. Plant and Soil 279(1): 201–207.
  • Souza, E.R., dos Santos Freire, M.B.G., da Cunha, K.P.V., do Nascimento, C.W.A., Ruiz, H.A., Lins, C.M.T., 2012. Biomass, anatomical changes and osmotic potential in Atriplex nummularia Lindl. cultivated in sodic saline soil under water stress. Environmental and Experimental Botany 82: 20–27.
  • Stavi, I., Thevs, N., Priori, S., 2021. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Frontiers in Environmental Science 9:712831.
  • Suska-Malawska, M., Sulwiński, M., Wilk, M., Otarov, A., Metrak, M., 2019. Potential eolian dust contribution to accumulation of selected heavy metals and rare earth elements in the aboveground biomass of Tamarix spp. from saline soils in Kazakhstan. Environmental Monitoring and Assessment 191: 57.
  • Suska-Malawska, M., Vyrakhamanova, A., Ibraeva, M., Poshanov, M., Sulwiński, M., Toderich, K., Metrak, M., 2022. Spatial and in-depth distribution of soil salinity and heavy metals (Pb, Zn, Cd, Ni, Cu) in arable irrigated soils in Southern Kazakhstan. Agronomy 12: 1207.
  • Tyurin, I. V., 1965. Organic matter of soil and its role in fertility. Nauka, Moscow. 320p.
  • Ventura, Y., Sagi, M., 2013. Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environmental and Experimental Botany 92: 144–153.
  • Wang, L. M., Bu, X.L., Chen, J., Huang, D.F., Luo, T., 2018. Efects of NaCl on plant growth, root ultrastructure, water content, and ion accumulation in a halophytic seashore beach plum (Prunus maritima). Pakistan Journal of Botany 50(3): 863–869.
  • Yertayeva, Z. , Kızılkaya, R., Kaldybayev, S., Seitkali, N., Abdraimova, N., Zhamangarayeva, A., 2019. Changes in biological soil quality indicators under saline soil condition after amelioration with alfalfa (Medicago sativa L.) cultivation in meadow Solonchak. Eurasian Journal of Soil Science 8 (3): 189-195.
  • Yin, X., Feng, Q., Li, Y., Deo, R.C., Liu, W., Zhu, M., Zheng, X., Liu, R., 2022. An interplay of soil salinization and groundwater degradation threatening coexistence of oasis-desert ecosystems. Science of The Total Environment 806: 150599.
  • Zhang, W., Ma, L., Abuduwaili, J., Ge, Y., Issanova, G., Saparov, G., 2019. Hydrochemical characteristics and irrigation suitability of surface water in the Syr Darya River, Kazakhstan. Environmental Monitoring and Assessment 191: 572.

Phytoremediation of saline soils using Glycyrrhiza glabra for enhanced soil fertility in arid regions of South Kazakhstan

Year 2025, , 22 - 37, 01.01.2025
https://doi.org/10.18393/ejss.1565833

Abstract

This study investigates the potential of Glycyrrhiza glabra (licorice) as a biological tool for reclaiming saline soils in the arid regions of South Kazakhstan. Licorice was cultivated over three growing seasons in weakly, moderately, and highly saline soils to evaluate its effectiveness in reducing soil salinity and improving soil fertility. The results show that licorice cultivation significantly reduced total salt concentrations and improved organic matter content in weakly saline soils. For instance, in some areas, total salts decreased by 50%, and humus content increased from 1.55% to 1.70%, indicating enhanced soil fertility. In moderately saline soils, the reduction in salt levels was less significant, and the plant's biomass yield dropped to 40 t/ha, compared to 50 t/ha in weakly saline soils. However, licorice still demonstrated its ability to moderately improve soil structure and nutrient availability. In strongly saline soils, licorice's effectiveness was considerably limited, with only minor reductions in salinity and a significant decrease in biomass yield to 20-30 t/ha. The study concludes that while Glycyrrhiza glabra is highly effective in reclaiming weakly saline soils, its impact in moderately and highly saline soils requires supplemental interventions, such as leaching, to optimize its phytoremediation potential. These findings suggest that integrating biological and traditional soil reclamation methods can offer a sustainable solution for managing saline soils in arid regions.

References

  • Bektayev, N., Mansurova, K., Kaldybayev, S., Pachikin, K., Еrzhanova, K., Absatova, B., 2023. Comprehensive assessment and information database on saline and waterlogged soils in Kazakhstan: Insights from Remote Sensing Technology. Eurasian Journal of Soil Science 12(4): 290 - 299.
  • Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254 (1976).
  • Camacho-Sanchez, M., Barcia-Piedras, J. M., Redondo-Gómez, S., Camacho, M., 2020. Mediterranean seasonality and the halophyte Arthrocnemum macrostachyum determine the bacterial community in salt marsh soils in Southwest Spain. Applied Soil Ecology 151: 103532.
  • Chin, Y.W., Jung, H.A., Liu, Y., Su, B.N., Castoro, J.A., Keller, W.J., Pereira, M.A., Kinghorn, A.D. 2007. Anti-oxidant constituents of the roots and stolons of licorice (Glycyrrhiza glabra). Journal of Agricultural and Food Chemistry 55(12): 4691–4697.
  • Cuevas, J., Daliakopoulos, I.N., del Moral, F., Hueso, J.J., Tsanis, I.K., 2019. A Review of soil-improving cropping systems for soil salinization. Agronomy 9(6): 295.
  • Duan, Y., Ma, L., Abuduwaili, J., Liu, W., Saparov, G., Smanov, Z., 2022. Driving factor ıdentification for the spatial distribution of soil salinity in the irrigation area of the Syr Darya River, Kazakhstan. Agronomy 12(8): 1912.
  • Egamberdieva, D., Mamedov, N.A., 2015. Potential use of licorice in phytoremediation of salt affected soils. In: Plants, Pollutants and Remediation. Öztürk, M., Ashraf, M., Aksoy, A., Ahmad, M.S.A., Hakeem, K.R. (Eds.). Springer, Dordrecht. pp. 309–318.
  • Falasca, S.L., Ulberich, A., Acevedo, A., 2014. Identification of Argentinian saline drylands suitable for growing Salicornia bigelovii for bioenergy. International Journal of Hydrogen Energy 39(16): 8682–8689.
  • Funakawa, S., Suzuki, R., Karbozova, E., Kosaki, T., Ishida, N., 2000. Salt-affected soils under rice-based irrigation agriculture in Southern Kazakhstan. Geoderma 97(1-2): 61–85.
  • GOST 26107-84. Soils. Methods for determination of total nitrogen. Available at Access date: 12.02.2024: https://www.russiangost.com/search.aspx?searchterm=GOST%2026107-84&showPics=1
  • GOST 26205-91. Soils. Determination of mobile compounds of phosphorus and potassium by Machigin method modified by CINAO. Available at Access date: 12.02.2024: https://www.russiangost.com/search.aspx?searchterm=GOST%2026205-91&showPics=1
  • GOST 26213-91. Soils. Methods for determination of organic matter. Available at Access date: 12.02.2024: https://www.russiangost.com/p-52750-gost-26213-91.aspx
  • GOST 26423-85. Soils. Methods for determination of specific electric conductivity, pH and solid residue of water extract. Available at Access date: 12.02.2024: https://www.russiangost.com/search.aspx?searchterm=GOST%2026423-85&showPics=1
  • GOST 26424-85. Soils. Method for determination of carbonate and bicarbonate ions in water extract. Available at Access date: 12.02.2024: https://www.russiangost.com/search.aspx?searchterm=GOST%2026424-85&showPics=1
  • GOST 26425-85. Soils. Methods for determination of chloride ion in water extract. Available at Access date: 12.02.2024: https://www.russiangost.com/search.aspx?searchterm=GOST%2026425-85&showPics=1
  • GOST 26427-85. Soils. Method for determination of sodium and potassium in water extract. Available at Access date: 12.02.2024: https://www.russiangost.com/search.aspx?searchterm=GOST%2026427-85%20&showPics=1
  • GOST 26428-85. Soils. Methods for determination of calcium and magnesium in water extract. Available at Access date: 12.02.2024: https://www.russiangost.com/search.aspx?searchterm=GOST%2026428-85&showPics=1
  • GOST 26487-85. Soils. Determination of exchangeable calcium and exchangeable (mobile) magnesium by CINAO methods. Available at Access date: 12.02.2024: https://www.russiangost.com/p-61441-gost-26487-85.aspx
  • GOST 34467-2018. Soils. Laboratory method for determining carbonate content. Available at Access date: 12.02.2024: https://www.russiangost.com/p-373925-gost-34467-2018.aspx
  • Guo, A., He, D., Xu, H.B., Geng, C.A., Zhao, J., 2015. Promotion of regulatory T cell Induction by immunomodulatory herbal medicine licorice and its two constituents. Scientific Reports 5: 14046.
  • Hayashi, H., Hattori, S., Inoue, K., Khodzhimatov, O., Ashurmetov, O., Ito, M., Honda, G., 2003. field survey of glycyrrhiza plants in central Asia (3). Chemical characterization of G. glabra collected in Uzbekistan. Chemical and Pharmaceutical Bulletin 51(11): 1338–1340.
  • Hayashi, H.; Sudo, H. 2009. Economic importance of licorice. Plant Biotechnology 26(1): 101–104.
  • He, C., Wang, W., Hou, J., 2019. Plant growth and soil microbial ımpacts of enhancing liquorice with inoculating dark septate endophytes under drought stress. Frontiers in Microbiology 10: 2277.
  • Holdt, S.L., Kraan, S., 2011. Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology 23(3): 543–597.
  • Jallali, I., Zaouali, Y., Missaoui, I., Smeoui, A., Abdelly, C., Ksouri, R., 2014. Variability of antioxidant and antibacterial effects of essential oils and acetonic extracts of two edible halophytes: Crithmum maritimum L. and Inula crithmoїdes L.. Food Chemistry 145: 1031-1038.
  • Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A., Aryal, N., 2022. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances 8: 100203.
  • Karakaş, S., Cullu, M.A., Dikilitaş, M., 2017. Comparison of two halophyte species (Salsola soda and Portulaca oleracea) for salt removal potential under diferent soil salinity conditions. Turkish Journal of Agriculture and Forestry 41(3): 183–190.
  • Khaitov, B., Tadjetdinov, N., Sindarov, O., Khaitbaeva, J., Sayimbetov, A., Khakberdiev, O., Nematov, T., 2024. Improving the growth of Glycyrrhiza Glabra L. in saline soils using bioagent seed treatments. Eurasian Journal of Soil Science 13(1): 43 - 51.
  • Khaitov, B., Urmonova, M., Karimov, A., Sulaymonov, B., Allanov, K., Israilov, I., Sottorov, O., 2021. Licorice (Glycyrrhiza glabra)—growth and phytochemical compound secretion in degraded lands under drought stress. Sustainability 13(5): 2923.
  • Kumar, P., Sharma, P.K., 2020. Soil salinity and food security in India. Frontiers in Sustainable Food Systems 4: 533781.
  • Kussainova, M., Spaeth, K., Zhaparkulova, E., 2020. Efficiency of using the rangeland hydrology and erosion model for assessing the degradation of pastures and forage lands in Aydarly, Kazakhstan. Eurasian Journal of Soil Science 9(2): 186 - 193.
  • Laiskhanov, S.U., Otarov, A., Savin, I.Y., Tanirbergenov, S.I., Mamutov, Z.U., Duisekov, S.N., Zhogolev, A., 2016. Dynamics of soil salinity in irrigation areas in South Kazakhstan. Polish Journal of Environmental Studies 25(6): 2469–2476.
  • Li, B., Wang, J., Yao, L., Meng, Y., Ma, X., Si, E., Ren, P., Yang, K., Shang, X., Wang, H., 2019. Halophyte Halogeton glomeratus is a promising candidate for the phytoremediation of heavy metal-contaminated saline soils. Plant and Soil 442(1): 323–331.
  • Liu, W., Ma, L., Smanov, Z., Samarkhanov, K., Abuduwaili, J., 2022. Clarifying soil texture and salinity using local spatial statistics (Getis-Ord Gi* and Moran’s I) in Kazakh–Uzbekistan Border Area, Central Asia. Agronomy 12: 332.
  • Ma, L., Abuduwaili, J., Smanov, Z., Ge, Y., Samarkhanov, K., Saparov, G., Issanova, G., 2019 Spatial and vertical variations and heavy metal enrichments in irrigated soils of the Syr Darya River watershed, Aral Sea Basin, Kazakhstan. International Journal of Environmental Research and Public Health 16(22):4398.
  • Manousaki, E., Kalogerakis, N., 2011. A halophytes-an emerging trend in phytoremediation. International Journal of Phytoremediation 13(10): 959–969.
  • Mohebi, Z., Khalasi Ahwaz, L., Heshmati, G.A., 2021. Comparison of diferent methods to estimate forage production of two shrub species Halocnemum strobilaceum (Pall.) Bieb and Halostachys caspica CA Mey (Case Study: Winter Rangelands of Golestan Province, Iran). Journal of Rangeland Science 11(2): 171–181.
  • Mukhopadhyay, R., Sarkar, B., Jat, H.S., Sharma, P.C., Bolan, N.S., 2021. Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management 280: 111736.
  • Nainwal, R.C., Chaurasiya, P., Kumar, A., Singh, M., Singh, D., Tewari, S.K., 2024. Phytoremediation: A sustainable approach to combat soil salinity. Advances in Environmental and Engineering Research 5(2): 1-11.
  • Otarov, A., 2014. Concentration of heavy metals in irrigated soils in Southern Kazakhstan. In: Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Mueller, L., Saparov, A., Lischeid, G. (Eds.). Environmental Science and Engineering. Springer, Cham. pp 641–652.
  • Öztürk, M., Altay, V., Güvensen, A., 2019. Sustainable use of halophytic taxa as food and fodder: an important genetic resource in Southwest Asia. In: Ecophysiology, abiotic stress responses and utilization of halophytes. Hasanuzzaman, M., Nahar, K., Öztürk , M. (Eds.). Springer, Singapore. pp.235–257.
  • Pachikin, K., Erokhina, O., Funakawa, S., 2014. Soils of Kazakhstan, their distribution and mapping. In: Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Mueller, L., Saparov, A., Lischeid, G. (Eds.). Environmental Science and Engineering. Springer, Cham. pp 519–533.
  • Saparov, A., 2014. Soil resources of the Republic of Kazakhstan: Current status, problems and solutions. In: Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Mueller, L., Saparov, A., Lischeid, G. (Eds.). Environmental Science and Engineering. Springer, Cham. pp 61–73.
  • Shahid, S.A., Zaman, M., Heng, L., 2018. Soil salinity: Historical perspectives and a world overview of the problem. In: Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Shahid, S.A., Zaman, M., Heng, L. (Eds.). Springer, Cham. pp. 43–53.
  • Shaygan, M., Baumgartl, T., 2022. Reclamation of salt-affected land: A review. Soil Systems 6(3): 61.
  • Sherene, T., 2010. Mobility and transport of heavy metals in the polluted soil environment. Biological Forum- An International Journal 2(2): 112–121 (2010).
  • Shrivastava, P., Kumar, R., 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences 22(2): 123-131.
  • Singh, D., Buhmann, A.K., Flowers, T.J., Seal, C.E., Papenbrock, J., 2014. Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions. AoB PLANTS 6: plu071.
  • Song, J., Feng, G., Zhang, F., 2006. Salinity and temperature effects on germination for three salt-resistant euhalophytes, Halostachys caspica, Kalidium foliatum and Halocnemum strobilaceum. Plant and Soil 279(1): 201–207.
  • Souza, E.R., dos Santos Freire, M.B.G., da Cunha, K.P.V., do Nascimento, C.W.A., Ruiz, H.A., Lins, C.M.T., 2012. Biomass, anatomical changes and osmotic potential in Atriplex nummularia Lindl. cultivated in sodic saline soil under water stress. Environmental and Experimental Botany 82: 20–27.
  • Stavi, I., Thevs, N., Priori, S., 2021. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Frontiers in Environmental Science 9:712831.
  • Suska-Malawska, M., Sulwiński, M., Wilk, M., Otarov, A., Metrak, M., 2019. Potential eolian dust contribution to accumulation of selected heavy metals and rare earth elements in the aboveground biomass of Tamarix spp. from saline soils in Kazakhstan. Environmental Monitoring and Assessment 191: 57.
  • Suska-Malawska, M., Vyrakhamanova, A., Ibraeva, M., Poshanov, M., Sulwiński, M., Toderich, K., Metrak, M., 2022. Spatial and in-depth distribution of soil salinity and heavy metals (Pb, Zn, Cd, Ni, Cu) in arable irrigated soils in Southern Kazakhstan. Agronomy 12: 1207.
  • Tyurin, I. V., 1965. Organic matter of soil and its role in fertility. Nauka, Moscow. 320p.
  • Ventura, Y., Sagi, M., 2013. Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environmental and Experimental Botany 92: 144–153.
  • Wang, L. M., Bu, X.L., Chen, J., Huang, D.F., Luo, T., 2018. Efects of NaCl on plant growth, root ultrastructure, water content, and ion accumulation in a halophytic seashore beach plum (Prunus maritima). Pakistan Journal of Botany 50(3): 863–869.
  • Yertayeva, Z. , Kızılkaya, R., Kaldybayev, S., Seitkali, N., Abdraimova, N., Zhamangarayeva, A., 2019. Changes in biological soil quality indicators under saline soil condition after amelioration with alfalfa (Medicago sativa L.) cultivation in meadow Solonchak. Eurasian Journal of Soil Science 8 (3): 189-195.
  • Yin, X., Feng, Q., Li, Y., Deo, R.C., Liu, W., Zhu, M., Zheng, X., Liu, R., 2022. An interplay of soil salinization and groundwater degradation threatening coexistence of oasis-desert ecosystems. Science of The Total Environment 806: 150599.
  • Zhang, W., Ma, L., Abuduwaili, J., Ge, Y., Issanova, G., Saparov, G., 2019. Hydrochemical characteristics and irrigation suitability of surface water in the Syr Darya River, Kazakhstan. Environmental Monitoring and Assessment 191: 572.
There are 59 citations in total.

Details

Primary Language English
Subjects Soil Sciences and Plant Nutrition (Other)
Journal Section Articles
Authors

Ulbossyn Makhanova This is me 0009-0009-4475-8677

Mariya Ibraeva This is me 0000-0002-8635-2909

Publication Date January 1, 2025
Submission Date February 12, 2024
Acceptance Date October 6, 2024
Published in Issue Year 2025

Cite

APA Makhanova, U., & Ibraeva, M. (2025). Phytoremediation of saline soils using Glycyrrhiza glabra for enhanced soil fertility in arid regions of South Kazakhstan. Eurasian Journal of Soil Science, 14(1), 22-37. https://doi.org/10.18393/ejss.1565833