Research Article
BibTex RIS Cite
Year 2025, , 67 - 78, 01.01.2025
https://doi.org/10.18393/ejss.1579168

Abstract

References

  • Abd‐Elfattah, A., Wada, K., 1981. Adsorption of lead, copper, zinc, cobalt, and cadmium by soils that differ in cation‐exchange materials. European Journal of Soil Science 32(2): 271-283.
  • Akrawi, H., Al-Obaidi, M., Abdulrahman, C.H., 2021. Evaluation of Langmuir and Frendlich isotherm equation for Zinc Adsorption in some calcareous soil of Erbil province north of Iraq. IOP Conference Series: Earth and Environmental Science 76(1): 012017.
  • Bai, J., Zhao, Q., Wang, W., Wang, X., Jia, J., Cui, B., Liu, X., 2019. Arsenic and heavy metals pollution along a salinity gradient in drained coastal wetland soils: depth distributions, sources and toxic risks. Ecological indicators 96: 91-98.
  • Basta, N., Sloan, J., 1999. Bioavailablility of heavy metals in strongly acidic soils treated with exceptional quality biosolids. Journal of Environmental Quality 28(2): 633-638.
  • Bauer, T., Pinskii, D., Minkina, T., Nevidomskaya, D., Mandzhieva, S., Burachevskaya, M., Chaplygin, V., Popileshko, Y., 2018. Time effect on the stabilization of technogenic copper compounds in solid phases of Haplic Chernozem. Science of the Total Environment 626: 1100-1107.
  • Bauer, T.V., Pinskii, D.L., Minkina, T.M., Shuvaeva, V.A., Soldatov, A.V., Mandzhieva, S.S., Tsitsuashvili, V.S., Nevidomskaya, D.G., Semenkov, I.N., 2022. Application of XAFS and XRD methods for describing the copper and zinc adsorption characteristics in hydromorphic soils. Environmental Geochemistry and Health 44(2): 335-347.
  • Bradl, H.B., 2004. Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science 277(1): 1-18.
  • Brown, P.L., Ekberg, C., 2016. Hydrolysis of metal ions. John Wiley and Sons, Weinheim, Germany. 917p.
  • Burachevskaya, M., Minkina, T., Bauer, T., Lobzenko, I., Fedorenko, A., Mazarji, M., Sushkova, S., Mandzhieva, S., Nazarenko, A., Butova, V., 2023. Fabrication of biochar derived from different types of feedstocks as an efficient adsorbent for soil heavy metal removal. Scientific Reports 13: 2020.
  • Cao, W., Qin, C., Zhang, Y., Wei, J., Shad, A., Qu, R., Xian, Q., Wang, Z., 2024. Adsorption and migration behaviors of heavy metals (As, Cd, and Cr) in single and binary systems in typical Chinese soils. Science of the Total Environment 950: 175253.
  • Chizhikova, N., Khitrov, N., Varlamov, E., Churilin, N., 2018. The profile distribution of minerals within the solonetz in Yergeni. Dokuchaev Soil Bulletin 91: 63-84.
  • Cui, X., Hao, H., Zhang, C., He, Z., Yang, X., 2016. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars. Science of the Total Environment 539: 566-575.
  • Daramola, S., Demlie, M., Hingston, E., 2024. Mineralogical and sorption characterization of lateritic soils from Southwestern Nigeria for use as landfill liners. Journal of Environmental Management 355: 120511.
  • Das, B., Mondal, N., Bhaumik, R., Roy, P., 2014. Insight into adsorption equilibrium, kinetics and thermodynamics of lead onto alluvial soil. International Journal of Environmental Science and Technology 11: 1101-1114.
  • Degryse, F., Smolders, E., Parker, D., 2009. Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications–a review. European journal of Soil Science 60(4): 590-612.
  • Diagboya, P.N., Olu-Owolabi, B.I., Adebowale, K.O., 2015. Effects of time, soil organic matter, and iron oxides on the relative retention and redistribution of lead, cadmium, and copper on soils. Environmental Science and Pollution Research 22: 10331-10339.
  • Fisher-Power, L.M., Cheng, T., Rastghalam, Z.S., 2016. Cu and Zn adsorption to a heterogeneous natural sediment: Influence of leached cations and natural organic matter. Chemosphere 144: 1973-1979.
  • Ho, Y.-S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process biochemistry 34(5): 451-465.
  • Hobson, J.P., 1969. Physical adsorption isotherms extending from ultrahigh vacuum to vapor pressure. The Journal of Physical Chemistry 73(8): 2720-2727.
  • Imoto, Y., Yasutaka, T., 2020. Comparison of the impacts of the experimental parameters and soil properties on the prediction of the soil sorption of Cd and Pb. Geoderma 376: 114538.
  • ISO 10390:2005. Soil quality — Determination of pH. Available at Access date: 21.04.2024: https://www.iso.org/obp/ui/#iso:std:iso:10390:ed-2:v1:en
  • ISO 10693:1995. Soil quality — Determination of carbonate content — Volumetric method. Available at Access date: 21.04.2024: https://www.iso.org/obp/ui/#iso:std:iso:10693:ed-1:v1:en
  • ISO 14235:1998. Soil quality — Determination of organic carbon by sulfochromic oxidation. Available at Access date: 21.04.2024: https://www.iso.org/obp/ui/#iso:std:iso:14235:ed-1:v1:en
  • ISO 23470:2018. Soil quality — Determination of effective cation exchange capacity (CEC) and exchangeable cations using a hexamminecobalt(III)chloride solution. Available at Access date: 21.04.2024: https://www.iso.org/obp/ui/#iso:std:iso:23470:ed-2:v1:en
  • IUSS, 2015. World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps. Update 2015. World Soil Resources Reports 106. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. 192p. Available at Access date: 21.04.2024: http://www.fao.org/3/i3794en/I3794en.pdf
  • Jalali, M., Moharrami, S., 2007. Competitive adsorption of trace elements in calcareous soils of western Iran. Geoderma 140(1-2): 156-163.
  • Karavanova, E.I., Schmidt S.Yu., 2001. Sorption of water-soluble copper and zinc compounds by forest litter. Eurasian Soil Science 34(9): 967-974.
  • Komuro, R., Kikumoto, M., 2024. IntraPD model: Leaching of heavy metals from naturally contaminated soils. Environmental Pollution 340: 122861.
  • Konstantinova, E., Minkina, T., Nevidomskaya, D., Lychagin, M., Bezberdaya, L., Burachevskaya, M., Rajput, V. D., Zamulina, I., Bauer, T., Mandzhieva, S., 2024. Potentially toxic elements in urban soils of the coastal city of the Sea of Azov: Levels, sources, pollution and risk assessment. Environmental Research 252: 119080.
  • Konstantinova, E., Minkina, T., Nevidomskaya, D., Mandzhieva, S., Bauer, T., Zamulina, I., Voloshina, M., Lobzenko, I., Maksimov, A., Sushkova, S., 2023. Potentially toxic elements in surface soils of the Lower Don floodplain and the Taganrog Bay coast: sources, spatial distribution and pollution assessment. Environmental Geochemistry and Health 45(1): 101-119.
  • Kravchenko, E., Sushkova, S., Raza, M. H., Minkina, T., Dudnikova, T., Barbashev, A., Maksimov, A., Wong, M.H., 2024. Ecological and human health impact assessments based on long-term monitoring of soil PAHs near a coal-fired power plant. Environmental Geochemistry and Health 46: 288.
  • Kulp, S.A., Strauss, B.H., 2019. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nature Communications 10: 4844.
  • Li, Y., Liu, J., Wang, Y., Tang, X., Xu, J., Liu, X., 2023. Contribution of components in natural soil to Cd and Pb competitive adsorption: semi-quantitative to quantitative analysis. Journal of Hazardous Materials 441: 129883.
  • Liu, H., Xie, J., Cheng, Z., Wu, X., 2023. Characteristics, chemical speciation and health risk assessment of heavy metals in paddy soil and rice around an abandoned high-arsenic coal mine area, Southwest China. Minerals 13(5): 629.
  • Lu, S., Xu, Q., 2009. Competitive adsorption of Cd, Cu, Pb and Zn by different soils of Eastern China. Environmental Geology 57: 685-693.
  • McBride, M.B., 1994. Environmental chemistry of Soils. Oxford University Press. 406p.
  • Misono, M., Ochiai, E., Saito, Y., Yoneda, Y., 1967. A new dual parameter scale for the strength of Lewis acids and bases with the evaluation of their softness. Journal of Inorganic and Nuclear Chemistry 29(11): 2685-2691.
  • Mouni, L., Merabet, D., Robert, D., Bouzaza, A., 2009. Batch studies for the investigation of the sorption of the heavy metals Pb2+ and Zn2+ onto Amizour soil (Algeria). Geoderma 154(1-2): 30-35.
  • Najamuddin, Inayah, Labenua, R., Samawi, M.F., Yaqin, K., Paembonan, R.E., Ismail, F., Harahap, Z.A., 2024. Distribution of heavy metals Hg, Pb, and Cr in the coastal waters of small islands of Ternate, Indonesia. Ecological Frontiers 44(3): 529-537.
  • Park, J.-H., Ok, Y.S., Kim, S.-H., Cho, J.-S., Heo, J.-S., Delaune, R.D., Seo, D.-C., 2016. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 142: 77-83.
  • Pinskii, D., Shary, P., Mandzhieva, S., Minkina, T., Perelomov, L., Maltseva, A., Dudnikova, T., 2023. Effect of composition and properties of soils and soil-sand substrates contaminated with copper on morphometric parameters of barley plants. Eurasian Soil Science 56(3): 352-362.
  • Shaheen, S.M., Derbalah, A.S., Moghanm, F., 2012. Removal of heavy metals from aqueous solution by zeolite in competitive sorption system. International Journal of Environmental Science and Development 3(4): 362-367.
  • Shein, E., 2009. The particle-size distribution in soils: problems of the methods of study, interpretation of the results, and classification. Eurasian Soil Science 42: 284-291.
  • Sipos, P., Németh, T., Kis, V.K., Mohai, I., 2008. Sorption of copper, zinc and lead on soil mineral phases. Chemosphere 73(4): 461-469.
  • Sosorova, S.B., Merkusheva, M.G., Boloneva, L.N., Ubuguno, L.L., 2018. Parameters of sorption of cobalt and nickel ions by salt marshes of Western Transbaikal. Agrochemistry 9: 69–79. [In Russian]
  • Sposito, G., 2008. The chemistry of soils. Second edition. Oxford university press, USA. 329p.
  • Tepanosyan, G., Sahakyan, L., Belyaeva, O., Asmaryan, S., Saghatelyan, A., 2018. Continuous impact of mining activities on soil heavy metals levels and human health. Science of the Total Environment 639: 900-909.
  • Umeh, T.C., Nduka, J.K., Akpomie, K.G., 2021. Kinetics and isotherm modeling of Pb (II) and Cd (II) sequestration from polluted water onto tropical ultisol obtained from Enugu Nigeria. Applied Water Science 11: 65.
  • Usman, A.R.A., 2008. The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt. Geoderma 144(1-2): 334-343.
  • Vega, F.A., Covelo, E.F., Andrade, M., 2006. Competitive sorption and desorption of heavy metals in mine soils: influence of mine soil characteristics. Journal of Colloid and Interface Science 298(2): 582-592.
  • Vodyanitskii, Y.N., Rogova, O., Pinskii, D.L., 2000. Application of the Langmuir and Dubinin-Radushkevich equations to the description of Cu and Zn adsorption in rendzinas. Eurasian Soil Science 33(11): 1226-1233.
  • Ward, N.D., Megonigal, J.P., Bond-Lamberty, B., Bailey, V.L., Butman, D., Canuel, E.A., Diefenderfer, H., Ganju, N.K., Goñi, M.A., Graham, E.B., Hopkinson, C.S., Khangaonkar, T., Langley, J.A., McDowell, N.G., Myers-Pigg, A.N., Neumann, R.B., Osburn, C.L., Price, R.M., Rowland, J., Sengupta, A., Simard, M., Thornton, P.E., Tzortziou, M., Vargas, R., Weisenhorn, P.B., Windham-Myers, L., 2020. Representing the function and sensitivity of coastal interfaces in Earth system models. Nature Communications 11(1): 2458.
  • Yu, D., Wang, Y., Ding, F., Chen, X., Wang, J., 2021. Comparison of analysis methods of soil heavy metal pollution sources in China in last ten years. Chinese Journal of Soil Science 52(4): 1000.
  • Zamora-Ledezma, C., Negrete-Bolagay, D., Figueroa, F., Zamora-Ledezma, E., Ni, M., Alexis, F., Guerrero, V.H., 2021. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environmental Technology and Innovation 22: 101504.
  • Zwolak, A., Sarzyńska, M., Szpyrka, E., Stawarczyk, K., 2019. Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. Water, Air, and Soil Pollution 230: 164.

Adsorption of Pb, Ni and Zn by coastal soils: Isothermal models and kinetics analysis

Year 2025, , 67 - 78, 01.01.2025
https://doi.org/10.18393/ejss.1579168

Abstract

Coastal areas are facing increasing heavy metal pollution as a result of various anthropogenic activities, posing a serious threat to ecosystems. Modeling and understanding the sorption behavior of heavy metals in soils are essential for assessing their mobility and risk in the coastal landscapes. The aim of this study was to examine the adsorption behavior of Pb²⁺, Ni²⁺, and Zn²⁺ by common soil types of the Lower Don and the Taganrog Bay coast in Russia to better understand their potential environmental implications. The soil capacities for heavy metal adsorption and retention were determined using isothermal models. The maximum adsorption capacity and the binding strength parameter for the heavy metals were calculated, revealing significant differences among the soils. Haplic Chernozem emerged with superior values, while Gleyic Solonchak Sulfidic and Umbric Fluvisol trailed the lowest. All soils exhibited a greater adsorption capacity and binding strength for Pb compared to the other metals. The influence of soil characteristics on sorption and retention was also examined. The Pseudo-second-order model provided a more accurate description of the adsorption kinetics of heavy metals by the studied soils. The co-presence of metals in the system affected their sorption by the soils due to competition: soils adsorbed fewer metals but retained them more strongly. These findings are important for developing effective strategies to reduce heavy metal pollution in coastal ecosystems.

References

  • Abd‐Elfattah, A., Wada, K., 1981. Adsorption of lead, copper, zinc, cobalt, and cadmium by soils that differ in cation‐exchange materials. European Journal of Soil Science 32(2): 271-283.
  • Akrawi, H., Al-Obaidi, M., Abdulrahman, C.H., 2021. Evaluation of Langmuir and Frendlich isotherm equation for Zinc Adsorption in some calcareous soil of Erbil province north of Iraq. IOP Conference Series: Earth and Environmental Science 76(1): 012017.
  • Bai, J., Zhao, Q., Wang, W., Wang, X., Jia, J., Cui, B., Liu, X., 2019. Arsenic and heavy metals pollution along a salinity gradient in drained coastal wetland soils: depth distributions, sources and toxic risks. Ecological indicators 96: 91-98.
  • Basta, N., Sloan, J., 1999. Bioavailablility of heavy metals in strongly acidic soils treated with exceptional quality biosolids. Journal of Environmental Quality 28(2): 633-638.
  • Bauer, T., Pinskii, D., Minkina, T., Nevidomskaya, D., Mandzhieva, S., Burachevskaya, M., Chaplygin, V., Popileshko, Y., 2018. Time effect on the stabilization of technogenic copper compounds in solid phases of Haplic Chernozem. Science of the Total Environment 626: 1100-1107.
  • Bauer, T.V., Pinskii, D.L., Minkina, T.M., Shuvaeva, V.A., Soldatov, A.V., Mandzhieva, S.S., Tsitsuashvili, V.S., Nevidomskaya, D.G., Semenkov, I.N., 2022. Application of XAFS and XRD methods for describing the copper and zinc adsorption characteristics in hydromorphic soils. Environmental Geochemistry and Health 44(2): 335-347.
  • Bradl, H.B., 2004. Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science 277(1): 1-18.
  • Brown, P.L., Ekberg, C., 2016. Hydrolysis of metal ions. John Wiley and Sons, Weinheim, Germany. 917p.
  • Burachevskaya, M., Minkina, T., Bauer, T., Lobzenko, I., Fedorenko, A., Mazarji, M., Sushkova, S., Mandzhieva, S., Nazarenko, A., Butova, V., 2023. Fabrication of biochar derived from different types of feedstocks as an efficient adsorbent for soil heavy metal removal. Scientific Reports 13: 2020.
  • Cao, W., Qin, C., Zhang, Y., Wei, J., Shad, A., Qu, R., Xian, Q., Wang, Z., 2024. Adsorption and migration behaviors of heavy metals (As, Cd, and Cr) in single and binary systems in typical Chinese soils. Science of the Total Environment 950: 175253.
  • Chizhikova, N., Khitrov, N., Varlamov, E., Churilin, N., 2018. The profile distribution of minerals within the solonetz in Yergeni. Dokuchaev Soil Bulletin 91: 63-84.
  • Cui, X., Hao, H., Zhang, C., He, Z., Yang, X., 2016. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars. Science of the Total Environment 539: 566-575.
  • Daramola, S., Demlie, M., Hingston, E., 2024. Mineralogical and sorption characterization of lateritic soils from Southwestern Nigeria for use as landfill liners. Journal of Environmental Management 355: 120511.
  • Das, B., Mondal, N., Bhaumik, R., Roy, P., 2014. Insight into adsorption equilibrium, kinetics and thermodynamics of lead onto alluvial soil. International Journal of Environmental Science and Technology 11: 1101-1114.
  • Degryse, F., Smolders, E., Parker, D., 2009. Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications–a review. European journal of Soil Science 60(4): 590-612.
  • Diagboya, P.N., Olu-Owolabi, B.I., Adebowale, K.O., 2015. Effects of time, soil organic matter, and iron oxides on the relative retention and redistribution of lead, cadmium, and copper on soils. Environmental Science and Pollution Research 22: 10331-10339.
  • Fisher-Power, L.M., Cheng, T., Rastghalam, Z.S., 2016. Cu and Zn adsorption to a heterogeneous natural sediment: Influence of leached cations and natural organic matter. Chemosphere 144: 1973-1979.
  • Ho, Y.-S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process biochemistry 34(5): 451-465.
  • Hobson, J.P., 1969. Physical adsorption isotherms extending from ultrahigh vacuum to vapor pressure. The Journal of Physical Chemistry 73(8): 2720-2727.
  • Imoto, Y., Yasutaka, T., 2020. Comparison of the impacts of the experimental parameters and soil properties on the prediction of the soil sorption of Cd and Pb. Geoderma 376: 114538.
  • ISO 10390:2005. Soil quality — Determination of pH. Available at Access date: 21.04.2024: https://www.iso.org/obp/ui/#iso:std:iso:10390:ed-2:v1:en
  • ISO 10693:1995. Soil quality — Determination of carbonate content — Volumetric method. Available at Access date: 21.04.2024: https://www.iso.org/obp/ui/#iso:std:iso:10693:ed-1:v1:en
  • ISO 14235:1998. Soil quality — Determination of organic carbon by sulfochromic oxidation. Available at Access date: 21.04.2024: https://www.iso.org/obp/ui/#iso:std:iso:14235:ed-1:v1:en
  • ISO 23470:2018. Soil quality — Determination of effective cation exchange capacity (CEC) and exchangeable cations using a hexamminecobalt(III)chloride solution. Available at Access date: 21.04.2024: https://www.iso.org/obp/ui/#iso:std:iso:23470:ed-2:v1:en
  • IUSS, 2015. World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps. Update 2015. World Soil Resources Reports 106. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. 192p. Available at Access date: 21.04.2024: http://www.fao.org/3/i3794en/I3794en.pdf
  • Jalali, M., Moharrami, S., 2007. Competitive adsorption of trace elements in calcareous soils of western Iran. Geoderma 140(1-2): 156-163.
  • Karavanova, E.I., Schmidt S.Yu., 2001. Sorption of water-soluble copper and zinc compounds by forest litter. Eurasian Soil Science 34(9): 967-974.
  • Komuro, R., Kikumoto, M., 2024. IntraPD model: Leaching of heavy metals from naturally contaminated soils. Environmental Pollution 340: 122861.
  • Konstantinova, E., Minkina, T., Nevidomskaya, D., Lychagin, M., Bezberdaya, L., Burachevskaya, M., Rajput, V. D., Zamulina, I., Bauer, T., Mandzhieva, S., 2024. Potentially toxic elements in urban soils of the coastal city of the Sea of Azov: Levels, sources, pollution and risk assessment. Environmental Research 252: 119080.
  • Konstantinova, E., Minkina, T., Nevidomskaya, D., Mandzhieva, S., Bauer, T., Zamulina, I., Voloshina, M., Lobzenko, I., Maksimov, A., Sushkova, S., 2023. Potentially toxic elements in surface soils of the Lower Don floodplain and the Taganrog Bay coast: sources, spatial distribution and pollution assessment. Environmental Geochemistry and Health 45(1): 101-119.
  • Kravchenko, E., Sushkova, S., Raza, M. H., Minkina, T., Dudnikova, T., Barbashev, A., Maksimov, A., Wong, M.H., 2024. Ecological and human health impact assessments based on long-term monitoring of soil PAHs near a coal-fired power plant. Environmental Geochemistry and Health 46: 288.
  • Kulp, S.A., Strauss, B.H., 2019. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nature Communications 10: 4844.
  • Li, Y., Liu, J., Wang, Y., Tang, X., Xu, J., Liu, X., 2023. Contribution of components in natural soil to Cd and Pb competitive adsorption: semi-quantitative to quantitative analysis. Journal of Hazardous Materials 441: 129883.
  • Liu, H., Xie, J., Cheng, Z., Wu, X., 2023. Characteristics, chemical speciation and health risk assessment of heavy metals in paddy soil and rice around an abandoned high-arsenic coal mine area, Southwest China. Minerals 13(5): 629.
  • Lu, S., Xu, Q., 2009. Competitive adsorption of Cd, Cu, Pb and Zn by different soils of Eastern China. Environmental Geology 57: 685-693.
  • McBride, M.B., 1994. Environmental chemistry of Soils. Oxford University Press. 406p.
  • Misono, M., Ochiai, E., Saito, Y., Yoneda, Y., 1967. A new dual parameter scale for the strength of Lewis acids and bases with the evaluation of their softness. Journal of Inorganic and Nuclear Chemistry 29(11): 2685-2691.
  • Mouni, L., Merabet, D., Robert, D., Bouzaza, A., 2009. Batch studies for the investigation of the sorption of the heavy metals Pb2+ and Zn2+ onto Amizour soil (Algeria). Geoderma 154(1-2): 30-35.
  • Najamuddin, Inayah, Labenua, R., Samawi, M.F., Yaqin, K., Paembonan, R.E., Ismail, F., Harahap, Z.A., 2024. Distribution of heavy metals Hg, Pb, and Cr in the coastal waters of small islands of Ternate, Indonesia. Ecological Frontiers 44(3): 529-537.
  • Park, J.-H., Ok, Y.S., Kim, S.-H., Cho, J.-S., Heo, J.-S., Delaune, R.D., Seo, D.-C., 2016. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 142: 77-83.
  • Pinskii, D., Shary, P., Mandzhieva, S., Minkina, T., Perelomov, L., Maltseva, A., Dudnikova, T., 2023. Effect of composition and properties of soils and soil-sand substrates contaminated with copper on morphometric parameters of barley plants. Eurasian Soil Science 56(3): 352-362.
  • Shaheen, S.M., Derbalah, A.S., Moghanm, F., 2012. Removal of heavy metals from aqueous solution by zeolite in competitive sorption system. International Journal of Environmental Science and Development 3(4): 362-367.
  • Shein, E., 2009. The particle-size distribution in soils: problems of the methods of study, interpretation of the results, and classification. Eurasian Soil Science 42: 284-291.
  • Sipos, P., Németh, T., Kis, V.K., Mohai, I., 2008. Sorption of copper, zinc and lead on soil mineral phases. Chemosphere 73(4): 461-469.
  • Sosorova, S.B., Merkusheva, M.G., Boloneva, L.N., Ubuguno, L.L., 2018. Parameters of sorption of cobalt and nickel ions by salt marshes of Western Transbaikal. Agrochemistry 9: 69–79. [In Russian]
  • Sposito, G., 2008. The chemistry of soils. Second edition. Oxford university press, USA. 329p.
  • Tepanosyan, G., Sahakyan, L., Belyaeva, O., Asmaryan, S., Saghatelyan, A., 2018. Continuous impact of mining activities on soil heavy metals levels and human health. Science of the Total Environment 639: 900-909.
  • Umeh, T.C., Nduka, J.K., Akpomie, K.G., 2021. Kinetics and isotherm modeling of Pb (II) and Cd (II) sequestration from polluted water onto tropical ultisol obtained from Enugu Nigeria. Applied Water Science 11: 65.
  • Usman, A.R.A., 2008. The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt. Geoderma 144(1-2): 334-343.
  • Vega, F.A., Covelo, E.F., Andrade, M., 2006. Competitive sorption and desorption of heavy metals in mine soils: influence of mine soil characteristics. Journal of Colloid and Interface Science 298(2): 582-592.
  • Vodyanitskii, Y.N., Rogova, O., Pinskii, D.L., 2000. Application of the Langmuir and Dubinin-Radushkevich equations to the description of Cu and Zn adsorption in rendzinas. Eurasian Soil Science 33(11): 1226-1233.
  • Ward, N.D., Megonigal, J.P., Bond-Lamberty, B., Bailey, V.L., Butman, D., Canuel, E.A., Diefenderfer, H., Ganju, N.K., Goñi, M.A., Graham, E.B., Hopkinson, C.S., Khangaonkar, T., Langley, J.A., McDowell, N.G., Myers-Pigg, A.N., Neumann, R.B., Osburn, C.L., Price, R.M., Rowland, J., Sengupta, A., Simard, M., Thornton, P.E., Tzortziou, M., Vargas, R., Weisenhorn, P.B., Windham-Myers, L., 2020. Representing the function and sensitivity of coastal interfaces in Earth system models. Nature Communications 11(1): 2458.
  • Yu, D., Wang, Y., Ding, F., Chen, X., Wang, J., 2021. Comparison of analysis methods of soil heavy metal pollution sources in China in last ten years. Chinese Journal of Soil Science 52(4): 1000.
  • Zamora-Ledezma, C., Negrete-Bolagay, D., Figueroa, F., Zamora-Ledezma, E., Ni, M., Alexis, F., Guerrero, V.H., 2021. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environmental Technology and Innovation 22: 101504.
  • Zwolak, A., Sarzyńska, M., Szpyrka, E., Stawarczyk, K., 2019. Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. Water, Air, and Soil Pollution 230: 164.
There are 55 citations in total.

Details

Primary Language English
Subjects Soil Sciences and Plant Nutrition (Other)
Journal Section Articles
Authors

Tatiana Minkina This is me 0000-0003-3022-0883

Tatiana Bauer This is me 0000-0002-6751-8686

Oleg Khroniuk This is me 0000-0001-6385-2743

Ekaterina Kravchenko This is me 0000-0002-8935-5793

David Pinsky This is me 0000-0002-5834-5648

Anatoly Barakhov This is me 0000-0003-0467-729X

Inna Zamulina This is me 0000-0001-6279-6428

Elizabeth Latsynnik This is me 0009-0008-4634-7698

Svetlana Sushkova This is me 0000-0003-3470-9627

Yao Jun This is me 0000-0001-7710-4498

Coşkun Gülser 0000-0002-6332-4876

Rıdvan Kızılkaya

Publication Date January 1, 2025
Submission Date April 21, 2024
Acceptance Date October 24, 2024
Published in Issue Year 2025

Cite

APA Minkina, T., Bauer, T., Khroniuk, O., Kravchenko, E., et al. (2025). Adsorption of Pb, Ni and Zn by coastal soils: Isothermal models and kinetics analysis. Eurasian Journal of Soil Science, 14(1), 67-78. https://doi.org/10.18393/ejss.1579168