Araştırma Makalesi
BibTex RIS Kaynak Göster

Spatial variability of soil organic carbon density under different land covers and soil types in a sub-humid terrestrial ecosystem

Yıl 2019, Cilt: 8 Sayı: 1, 35 - 43, 01.01.2019
https://doi.org/10.18393/ejss.486582

Öz

The
main objectives of the current study
are i) to estimate SOC in different soil depths and
to generate their spatial distribution maps, ii) to assess relationship between
variation of different soil types and SOC density, iii) to determine effects of
land cover types on SOC in Inebolu Watershed located in sub-humid terrestrial
ecosystem. In order to determine land cover types of the study area, aster
satellite image was used and five main land cover types that are bare land,
sparsely vegetated area, broadleaved forest area, mixed forest area and
needleleaved forest area were classified. Results indicated that soil types and
land cover were two crucial influencing factors for spatial variation of SOC
density. It was determined that
SOC density of soil types, Vertic Haplustept (12.93 kg.m-2)
was significantly higher than other soil subgroups. In this case, it can be
said that main reasons of this result are indicated as soil profile depth and
pedological development. In addition, when
comparing
the two main factors, land cover explained more of the SOC density variability
and was the main controlling factor in the surface; in the subsurface, not only
land cover types but also some properties of soil types such as texture,
genetic horizons, soil depth have an important role on SOC density. On the
other hand, it can be conclude that the combination of the soil type and land
cover was a dramatically better predictor of SOC density.

Kaynakça

  • Amundson, R., 2001. The carbon budget in soils. Annual Review of Earth Planetary Science 29: 535–562.
  • Anonymous, 1999. Soil Survey Staff Soil Taxonomy. A Basic of soil classification for making and interpreting soil survey. USDA Handbook No: 436, Washington D.C. USA.
  • Anonymous. 2007 Intergovernmental Panel on Climate Change, IPCC. Climate Change Synthesis Report, 52 pp.
  • Başkan, O., Dengiz, O., 2008. Comparison of traditional and geostatistical methods to estimate soil erodibility factor. Arid Land Research and Management 22(1): 29-45.
  • Batjes, N.H., Sombroek, W.G., 1997. Possibilities for carbon sequestration in tropical and subtropical soils. Global Change Biology 3(2): 161-173.
  • Blake, G.R., Hartge, K.H., 1986. Bulk density. In: Methods of Soil Analysis Part 1 Physical and Mineralogical Methods. 2nd Edition, Klute, A., (Ed). American Society of Agronomy, Soil Science Society of America. Madison, Wisconsin, USA. pp. 363-375.
  • Chaplot, V., Bouahom, B., Valentin, C., 2009. Soil organic carbon stocks in Laos: spatial variations and controlling factors. Global Change Biology 16(4): 1380-1393.
  • Chiti, T., Gardin, L., Perugini, L., Quaratino,R., Vaccari, F.P., Miglietta, F., Valentini, R., 2011. Soil organic carbon stock assessment for the different cropland land uses in Italy. Biology and Fertility of Soils 48(1): 9-17.
  • David White II, A., Welty-Bernard, A., Rasmussen, C., Schwartz, E., 2009. Vegetation controls on soil organic carbon dynamics in an arid, hyperthermic ecosystem. Geoderma 150(1-2): 214-223.
  • Dengiz, O., Sağlam, M., Türkmen, F., 2015. Effects of soil types and land use - land cover on soil organic carbon density at Madendere Basin. Eurasian Journal of Soil Science 4(2): 82 – 87.
  • Detwiler, R.P., 1986. Land use change and the global carbon cycle: the role of tropical soils. Biogeochemistry 2(1): 67-93.
  • Di, H.J., Kemp, R.A., Trangmar, B.B., 1989. Use of geostatistics in designing sampling strategies for soil survey. Soil Science Society of America Journal 53(4): 1163–1167.
  • Fang, X., Xue, Z., Li, B., An, S., 2012. Soil organic carbon distribution in relation to land use and its storage in a small watershed of the Loess Plateau, China. Catena 88(1): 6-13.
  • Grimm, R., Behrens, T., Marker, M., Elsenbeer, A., 2008. Soil organic carbon concentrations and stocks on Barro Colorado Island-digital soil mapping using Random Forests analysis. Geoderma 146(1-2): 102-113.
  • GS+. 2007. Geostatistics for the Environmental Sciences, Gamma Design Software, Plainwell, MI, USA.
  • Guggenberger, G., Zech, W., Thomas, R.J., 1995. Lignin and carbohydrate alteration in particle size separates of an Oxisol under tropical pastures following native savanna. Soil Biology and Biochemistry 27(12): 1629–1638.
  • Guo, L., Gifford, R.M., 2002. Soil carbon stocks and land use change: a meta-analysis. Global Change Biology 8(4): 345-360.
  • Hani A., Pazira E., Manshouri M., Kafaky S.B., Tali, M.G., 2010. Spatial distribution and mapping of risk elements pollution in agricultural soils of southern Tehran, Iran. Plant Soil Environment 56(6): 288- 296.
  • Houghton, J., Ding, Y., Griggs, D., Noguer, M., van der Linden, P, Dai, X., Maskell, K., Johnson, C., 2001. The Scientific basis, climate change, Cambridge University, Cambridge, New York, 881p.
  • Isaaks, H.E., Srivastava, R.M., 1989 An introduction to applied geostatistics. Oxford University Press, N.Y, 10016.
  • İmamoğlu, A., Dengiz, O., 2016. Determination of soil erosion risk using RUSLE model and soil organic carbon loss in Alaca catchment (Central Black Sea Region, Turkey). Rendiconti Lincei 28(1): 11-23.
  • Jaiarree, S., Chidthaisong, A., Tangtham, N., Polprasert, C., Sarobol, E., Tyler, S.C., 2011. Soil organic carbon loss and turnover resulting from forest conversion to maize fields in Eastern Thailand. Pedosphere 21(5): 581-590.
  • Janzen, H.H., 2004. Carbon cycling in earth systems-a soil science perspective. Agriculture, Ecosystems & Environment 104(3): 399-417.
  • Khan, S.K., Kar, S., 2017. Surface charge is a function of organic carbon content and mineralogical compositions of soil. Eurasian Journal of Soil Science 7(1): 59–63.
  • Kızılkaya, R., Dengiz, O., 2010. Variation of land use and land cover effects on some soil physico-chemical characteristics and soil enzyme activity. Zemdirbyste-Agriculture 97(2): 15-24.
  • Knoepp, J.D., Swank, W.T., 1997. Forest management effects on surface soil carbon and nitrogen. Soil Science Society of America Journal 61(3): 928–935.
  • Kravchenko, A., Bullock, D.G., 1999. A comparative study of interpolation methods for mapping soil properties. Agronomy Journal 91(3): 393-400.
  • Leenaers, H., Okx, J.P., Burrough, P.A., 1990. Employing elevation data for efficient mapping of soil pollution on floodplains. Soil Use and Management 6(3): 105-113.
  • Loganathan, P., Bretherton, M.R., Hedley, M.J., 2007. Effect of soil cultivation and winter pugging on fluorine distribution in soil profiles under pasture following long-term applications of phosphate fertilisers. Australian Journal of Soil Research 45(1): 41-47.
  • Murty, D., Krischbaum, M.F., McMurtrie, R.E., McGilvray, H., 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? a review of the literatüre. Global Change Biology 8(2): 105–123.
  • Nelson, D.W., Sommers, L.E., 1982. Total carbon, organic carbon, and organic matter. In: Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, A.L. Page, R.H. Miller, D.R. Keeney (Eds.), 2nd Ed. Agronomy Monograph No. 9, ASA-SSSA, Madison, Wisconsin, USA. pp.539–573.
  • Pastor, J., Post, W.M., 1986. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry 2(1): 3–27.
  • Rhoades, C.C, Eckert, G.E., Coleman, D.C., 2000. Soil carbon differences among forest agriculture and secondary vegetation in lower montane Ecuador. Ecological Applications 10(2): 497-505.
  • Schjønning, P., Thomsen, I.K, Møberg, J.P, de Jonge, H., Kristensen, K., Christensen, B.T., 1999. Turnover of organic matter in differently textured soils: I. Physical characteristics of structurally disturbed and intact soils. Geoderma 89(3-4): 177–198.
  • Schlesinger, P., Palmer Winkler, J., 2000. Soils and the global carbon cycle. In: The Carbon Cycle Wigley, T.M.L., Schimel, D.S. (Eds.). Cambridge University Press, Cambridge, UK. pp.93–101.
  • Sevgi, O., Makineci, E., Karagoz, O., 2011. The Forest floor and mineral soil carbon pools of six different forest tree species. Ekoloji 20: 8-14.
  • Sombroek, W, Nachtergaele, F.O., Hebel, A., 1993. Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. Journal of the Human Environment 22(7): 417–426.
  • Vasconcelos, R.W., dos Santos Gomes, V., de Lucena, D.R., da Silva, O.A., Sousa, A.C., D'Andrea, A.F., 2014. Soil organic matter and soil acidity in Mangrove areas in the river Paraiba Estuary, Cabedelo, Paraiba, Brazil. Eurasian Journal of Soil Science 3 (3): 157–162.
  • Yanai, R.D., Currie, W.S., Goodale, C.L., 2003. Soil carbon dynamics after forest harvest: an ecosystem paradigm reconsidered. Ecosystems 6(3): 197–212.
  • Zhang, M., Zhang, X.K., Liang, W.J., Jiang, Y., Dai, G.H., Wang, X.G., Han, S.J., 2011. Distribution of soil organic carbon fractions along the altitudinal gradient in Changbai Mountain, China. Pedosphere 21(5): 615-620.
Yıl 2019, Cilt: 8 Sayı: 1, 35 - 43, 01.01.2019
https://doi.org/10.18393/ejss.486582

Öz

Kaynakça

  • Amundson, R., 2001. The carbon budget in soils. Annual Review of Earth Planetary Science 29: 535–562.
  • Anonymous, 1999. Soil Survey Staff Soil Taxonomy. A Basic of soil classification for making and interpreting soil survey. USDA Handbook No: 436, Washington D.C. USA.
  • Anonymous. 2007 Intergovernmental Panel on Climate Change, IPCC. Climate Change Synthesis Report, 52 pp.
  • Başkan, O., Dengiz, O., 2008. Comparison of traditional and geostatistical methods to estimate soil erodibility factor. Arid Land Research and Management 22(1): 29-45.
  • Batjes, N.H., Sombroek, W.G., 1997. Possibilities for carbon sequestration in tropical and subtropical soils. Global Change Biology 3(2): 161-173.
  • Blake, G.R., Hartge, K.H., 1986. Bulk density. In: Methods of Soil Analysis Part 1 Physical and Mineralogical Methods. 2nd Edition, Klute, A., (Ed). American Society of Agronomy, Soil Science Society of America. Madison, Wisconsin, USA. pp. 363-375.
  • Chaplot, V., Bouahom, B., Valentin, C., 2009. Soil organic carbon stocks in Laos: spatial variations and controlling factors. Global Change Biology 16(4): 1380-1393.
  • Chiti, T., Gardin, L., Perugini, L., Quaratino,R., Vaccari, F.P., Miglietta, F., Valentini, R., 2011. Soil organic carbon stock assessment for the different cropland land uses in Italy. Biology and Fertility of Soils 48(1): 9-17.
  • David White II, A., Welty-Bernard, A., Rasmussen, C., Schwartz, E., 2009. Vegetation controls on soil organic carbon dynamics in an arid, hyperthermic ecosystem. Geoderma 150(1-2): 214-223.
  • Dengiz, O., Sağlam, M., Türkmen, F., 2015. Effects of soil types and land use - land cover on soil organic carbon density at Madendere Basin. Eurasian Journal of Soil Science 4(2): 82 – 87.
  • Detwiler, R.P., 1986. Land use change and the global carbon cycle: the role of tropical soils. Biogeochemistry 2(1): 67-93.
  • Di, H.J., Kemp, R.A., Trangmar, B.B., 1989. Use of geostatistics in designing sampling strategies for soil survey. Soil Science Society of America Journal 53(4): 1163–1167.
  • Fang, X., Xue, Z., Li, B., An, S., 2012. Soil organic carbon distribution in relation to land use and its storage in a small watershed of the Loess Plateau, China. Catena 88(1): 6-13.
  • Grimm, R., Behrens, T., Marker, M., Elsenbeer, A., 2008. Soil organic carbon concentrations and stocks on Barro Colorado Island-digital soil mapping using Random Forests analysis. Geoderma 146(1-2): 102-113.
  • GS+. 2007. Geostatistics for the Environmental Sciences, Gamma Design Software, Plainwell, MI, USA.
  • Guggenberger, G., Zech, W., Thomas, R.J., 1995. Lignin and carbohydrate alteration in particle size separates of an Oxisol under tropical pastures following native savanna. Soil Biology and Biochemistry 27(12): 1629–1638.
  • Guo, L., Gifford, R.M., 2002. Soil carbon stocks and land use change: a meta-analysis. Global Change Biology 8(4): 345-360.
  • Hani A., Pazira E., Manshouri M., Kafaky S.B., Tali, M.G., 2010. Spatial distribution and mapping of risk elements pollution in agricultural soils of southern Tehran, Iran. Plant Soil Environment 56(6): 288- 296.
  • Houghton, J., Ding, Y., Griggs, D., Noguer, M., van der Linden, P, Dai, X., Maskell, K., Johnson, C., 2001. The Scientific basis, climate change, Cambridge University, Cambridge, New York, 881p.
  • Isaaks, H.E., Srivastava, R.M., 1989 An introduction to applied geostatistics. Oxford University Press, N.Y, 10016.
  • İmamoğlu, A., Dengiz, O., 2016. Determination of soil erosion risk using RUSLE model and soil organic carbon loss in Alaca catchment (Central Black Sea Region, Turkey). Rendiconti Lincei 28(1): 11-23.
  • Jaiarree, S., Chidthaisong, A., Tangtham, N., Polprasert, C., Sarobol, E., Tyler, S.C., 2011. Soil organic carbon loss and turnover resulting from forest conversion to maize fields in Eastern Thailand. Pedosphere 21(5): 581-590.
  • Janzen, H.H., 2004. Carbon cycling in earth systems-a soil science perspective. Agriculture, Ecosystems & Environment 104(3): 399-417.
  • Khan, S.K., Kar, S., 2017. Surface charge is a function of organic carbon content and mineralogical compositions of soil. Eurasian Journal of Soil Science 7(1): 59–63.
  • Kızılkaya, R., Dengiz, O., 2010. Variation of land use and land cover effects on some soil physico-chemical characteristics and soil enzyme activity. Zemdirbyste-Agriculture 97(2): 15-24.
  • Knoepp, J.D., Swank, W.T., 1997. Forest management effects on surface soil carbon and nitrogen. Soil Science Society of America Journal 61(3): 928–935.
  • Kravchenko, A., Bullock, D.G., 1999. A comparative study of interpolation methods for mapping soil properties. Agronomy Journal 91(3): 393-400.
  • Leenaers, H., Okx, J.P., Burrough, P.A., 1990. Employing elevation data for efficient mapping of soil pollution on floodplains. Soil Use and Management 6(3): 105-113.
  • Loganathan, P., Bretherton, M.R., Hedley, M.J., 2007. Effect of soil cultivation and winter pugging on fluorine distribution in soil profiles under pasture following long-term applications of phosphate fertilisers. Australian Journal of Soil Research 45(1): 41-47.
  • Murty, D., Krischbaum, M.F., McMurtrie, R.E., McGilvray, H., 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? a review of the literatüre. Global Change Biology 8(2): 105–123.
  • Nelson, D.W., Sommers, L.E., 1982. Total carbon, organic carbon, and organic matter. In: Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, A.L. Page, R.H. Miller, D.R. Keeney (Eds.), 2nd Ed. Agronomy Monograph No. 9, ASA-SSSA, Madison, Wisconsin, USA. pp.539–573.
  • Pastor, J., Post, W.M., 1986. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry 2(1): 3–27.
  • Rhoades, C.C, Eckert, G.E., Coleman, D.C., 2000. Soil carbon differences among forest agriculture and secondary vegetation in lower montane Ecuador. Ecological Applications 10(2): 497-505.
  • Schjønning, P., Thomsen, I.K, Møberg, J.P, de Jonge, H., Kristensen, K., Christensen, B.T., 1999. Turnover of organic matter in differently textured soils: I. Physical characteristics of structurally disturbed and intact soils. Geoderma 89(3-4): 177–198.
  • Schlesinger, P., Palmer Winkler, J., 2000. Soils and the global carbon cycle. In: The Carbon Cycle Wigley, T.M.L., Schimel, D.S. (Eds.). Cambridge University Press, Cambridge, UK. pp.93–101.
  • Sevgi, O., Makineci, E., Karagoz, O., 2011. The Forest floor and mineral soil carbon pools of six different forest tree species. Ekoloji 20: 8-14.
  • Sombroek, W, Nachtergaele, F.O., Hebel, A., 1993. Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. Journal of the Human Environment 22(7): 417–426.
  • Vasconcelos, R.W., dos Santos Gomes, V., de Lucena, D.R., da Silva, O.A., Sousa, A.C., D'Andrea, A.F., 2014. Soil organic matter and soil acidity in Mangrove areas in the river Paraiba Estuary, Cabedelo, Paraiba, Brazil. Eurasian Journal of Soil Science 3 (3): 157–162.
  • Yanai, R.D., Currie, W.S., Goodale, C.L., 2003. Soil carbon dynamics after forest harvest: an ecosystem paradigm reconsidered. Ecosystems 6(3): 197–212.
  • Zhang, M., Zhang, X.K., Liang, W.J., Jiang, Y., Dai, G.H., Wang, X.G., Han, S.J., 2011. Distribution of soil organic carbon fractions along the altitudinal gradient in Changbai Mountain, China. Pedosphere 21(5): 615-620.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Orhan Dengiz

Fikret Saygın Bu kişi benim

Ali İmamoğlu Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 8 Sayı: 1

Kaynak Göster

APA Dengiz, O., Saygın, F., & İmamoğlu, A. (2019). Spatial variability of soil organic carbon density under different land covers and soil types in a sub-humid terrestrial ecosystem. Eurasian Journal of Soil Science, 8(1), 35-43. https://doi.org/10.18393/ejss.486582

Cited By