Araştırma Makalesi
BibTex RIS Kaynak Göster

Role of sorbents in early growth of barley under copper and benzo(a)pyrene contaminated soils

Yıl 2023, Cilt: 12 Sayı: 1, 1 - 9, 01.01.2023
https://doi.org/10.18393/ejss.1177672

Öz

In modern economic and industrial realities, agricultural lands are often located next to industrial areas, which leads to soil contamination and, as a result, agricultural products with pollutants. Pollution of soils and plants by several pollutants of various nature has acquired huge proportions. There is a threat of migration of dangerous ecotoxicants, including heavy metals and benz[a]pyrene, one of the main persistent compounds, a marker of PAH soil contamination, along trophic chains that may be dangerous to public health. This study examines the use of various types of mineral sorbents (Tripoli, Brown coal, Diatomite) and mineral sorbents (Biochar, Granular activated coal) to reduce the toxic effects of pollutants on the sources of anthropogenic emissions of heavy metals and polycyclic aromatic hydrocarbons adjacent to the sources. Using scanning electron microscopy, it was found that the sorbents have a high specific surface area. With the help of phytotesting in combined contaminated soils, the optimal dose of sorbent administration was determined at the level of 1% and 2% for various pollution variants. In addition, the analyzed sorbents are ordered by the effect of reducing the phytotoxicity of combined soil pollution. It was found that the introduction of sorbents into contaminated soil contributed to an increase in the morphometric parameters of the test culture - barley (Hordeum sativum distichum), which confirms the effectiveness of the sorption remediation of jointly contaminated soils with heavy metals and benz(a)pyrene.

Kaynakça

  • Abdel-Shafy, H.I., Mansour, M.S.M., 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum 25(1): 107–123.
  • Bain, E.J., Calo, J.M., Spitz-Steinberg, R., Kirchner, J., Axén J., 2010. Electrosorption Electrodesorption of arsenic on a granular activated carbon in the presence of other heavy metals. Energy and Fuels 24(6): 3415-3421.
  • Bauer, T., Linnik, V., Minkina, T., Mandzhieva, S., Nevidomskaya, D., 2018. Ecological–geochemical studies of technogenic soils in the flood plain landscapes of the Seversky Donets, Lower Don Basin. Geochemistry International 10: 992–1002.
  • Bauer, T., Minkina, T., Mandzhieva, S., Burachevskaya, M., Zharkova, M., 2020. Biochar application to detoxification of the heavy metal-contaminated fluvisols. E3S Web of Conferences XIII International Scientific and Practical Conference “State and Prospects for the Development of Agribusiness – INTERAGROMASH 2020” 175: 09009.
  • Bauer, T., Minkina, T., Sushkova, S., Rajput, V., Tereshenko, A., Nazarenko, A., Mandzhieva, S., Sushkov, A., 2020. Mechanisms of copper immobilization in fluvisol after the carbon sorbent applying. Eurasian Journal of Soil Science 9(4): 356-361.
  • Ben-Ali, S., Jaouali, I., Souissi-Najar, S., Ouederni, A., 2017. Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal. Journal of Cleaner Production 142(4): 3809-3821.
  • Bernard, L., Sawallisch, A., Heinze, S., Joergensen, R., Vohland, M., 2015. Usefulness of middle infrared spectroscopy for an estimation of chemical and biological soil properties – Underlying principles and comparison of different software packages. Soil Biology and Biochemistry 86: 116-125.
  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M.B., Scheckel, K., 2014. Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize?. Journal of Hazardous Materials 266: 141-166.
  • Chen, H., Yuan, X., Xiong, T., Jiang, L., Wang, H., Wu, Z., 2020. Biochar facilitated hydroxyapatite/calcium silicate hydrate for remediation of heavy metals contaminated soils. Water, Air, and Soil Pollution 231: 66.
  • Cheng, P., Zhang, S., Wang, Q., Feng, X., Zhang, S., Sun, Y., Wang, F., 2021. Contribution of nano-zero-valent iron and arbuscular mycorrhizal fungi to phytoremediation of heavy metal-contaminated soil. Nanomaterials 11(5): 1264.
  • Chikhi, M., Balask, F., Benchaabi, R., Ayat, A., Maameche, K., Meniai, A.H., 2011. Experimental study of coupling complexation-adsorption of Cu(II) on activated carbon. Energy Procedia 6: 284–291.
  • Dietz K.J., Baier, M., Krämer, U., 1999. Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Heavy metal stress in plants. Dietz, K.J., (Ed.). Springer-Verlag Berlin, Heidelberg, pp. 73-97.
  • Ding, K., Luo, Y., 2005. Bioremediation of copper and benzo[a]pyrene–contaminated soil by alfalfa J. Journal of Agro-Environment Science 24(4): 766–770.
  • Eeshwarasinghe, D., Loganathan, P., Vigneswaran, S., 2019. Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon. Chemosphere 223: 616-627.
  • Fedorenko, A.G., Minkina, T.M., Chernikova, N.P., Fedorenko, G.M., Mandzhieva, S.S., Rajput, V.D., Burachevskaya, M.V., Chaplygin, V.A., Bauer, T.V., Sushkova, S.N., Soldatov, A.V., 2021. The toxic effect of CuO of different dispersion degrees on the structure and ultrastructure of spring barley cells (Hordeum sativum distichum). Environmental Geochemistry and Health 43: 1673–1687.
  • Feng, N., Ghoveisi, H., Bitton, G., Bonzongo, J.C.J., 2016. Removal of phyto-accessible copper from contaminated soils using zero valent iron amendment and magnetic separation methods: Assessment of residual toxicity using plant and MetPLATE™ studies. Environmental Pollution 219: 9–18.
  • Gholizadeh, M., Hu, X., 2021. Removal of heavy metals from soil with biochar composite: A critical review of the mechanism. Journal of Environmental Chemical Engineering 9(5): 105830.
  • Gutiérrez-Ginés, M., Hernández, A., Pérez-Leblic, M., Pastor, J., Vangronsveld, J., 2014. Phytoremediation of soils co-contaminated by organic compounds and heavy metals: Bioassays with Lupinus luteus L. and associated endophytic bacteria. Journal of Environmental Management 143: 197–207.
  • Kabata-Pendias, A., 2011. Trace Elements in Soils and Plants. 4th Edition. CRC Press Boca Raton, USA. 548p.
  • Kotyak, P.A., 2019. Assessment of the toxic condition of sod-podzolic soil at different food levels. In: Fertility management and agroecological improvement. Kotyak, P.A. (Ed.). 25 April 2019, Yaroslavl, Russia. pp. 49-54. [in Russian].
  • Kotyak, P.A., Chebykina, E.V., Voronin, A.N., 2019. Estimation of toxicity of sod-podzolyy soil depending on applicable agricultures. In: Actual problems of environmental management, water use, agrochemistry, soil science and ecology. Kotyak, P.A., Chebykina, E.V., Voronin, A.N. (Eds.). 18 April 2019. Omsk, Russia. pp.696–702. [in Russian].
  • Kumar, V., Pandita, S., Sidhu, G.P.S., Sharma, A., Khanna, K., Kaur, P., Bali, A.S., Setia, R., 2021. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere 262: 127810.
  • Li, S., Song, K., Zhao, D., Rugarabamu, J., Diao, R., Gu, Y., 2020. Molecular simulation of benzene adsorption on different activated carbon under different temperatures. Microporous and Mesoporous Materials 302: 110220.
  • Matsumoto, H.K., Okada, E., Takahashi, E., 1979. Excretion products of maize roots from seedling to seed development stage. Plant and Soil 53: 17–26.
  • Minkina, T.M., Nazarenko, O.G., Motuzova, G.V, Mandzhieva, S.S., 2009. Group composition of heavy metal compounds in the soils contaminated by emissions from the Novocherkassk power station. Eurasian Soil Science 42(13): 1533–1542.
  • Minkina, T.M., Soldatov, A.V., Motuzova, G.V., Podkovyrina, Y.S., Nevidomskaya, D.G., 2013. Molecular-structural analysis of the Cu (II) ion in ordinary chernozem: Evidence from XANES spectroscopy and methods of molecular dynamics. Doklady Earth Sciences 449: 418–421.
  • Minkina, T., Fedorov, A., Nevidomskaya, D., Mandzhieva, S,. Kozlova M., 2016. Specific features of content and mobility of heavy metals in soils of floodplain of the Don River. Arid Ecosystems 6: 70–79.
  • Mousavi, S.J., Parvini, M., Ghorbani, M., 2018. Adsorption of heavy metals (Cu2+ and Zn2+) on novel bifunctional ordered mesoporous silica: Optimization by response surface methodology. Journal of the Taiwan Institute of Chemical Engineers 84: 123-141.
  • Pinskii, D.L., Minkina, T.M., Bauer, T.V., Nevidomskaya, D.G., Mandzhieva, S.S., Burachevskaya, M.V., 2018. Copper adsorption by chernozem soils and parent rocks in Southern Russia. Geochemistry International 56(3): 266–275.
  • Rajput, V.D., Minkina, T., Morteza, F., Kumari, A., Khan, M., Mandzhieva, S., Sushkova, S., El-Ramady, H., Verma, K.K., Singh, A., Eric, D. van Hullebusch., Kumar, R., 2021a. Singh effects of silicon and silicon-based nanoparticles on rhizosphere microbiome. Biology 10: 791.
  • Rajput, V., Chaplygin, V., Gorovtsov, A., Fedorenko, A., Azarov, A., Chernikova, N., Barakhov, A., Minkina, T., Maksimov, A., Mandzhieva, S., Sushkova, S., 2021b. Assessing the toxicity and accumulation of bulk- and nanoCuO in Hordeum sativum L. Environmental Geochemistry and Health 43: 2443–2454.
  • Singh, H., Verma, A., Kumar, M., Sharma, R., Gupta, R., Kaur, M., Negi, M., Sharma, S.K., 2017. Phytoremediation: A green technology to clean up the sites with low and moderate level of heavy metals. Austin Biochemistry 2(2): 1012.
  • Skłodowski, P., Maciejewska, A., Kwiatkowska, J., 2006. The effect of organic matter from brown coal on bioavailability of heavy metals in contaminated soils, In: Soil and Water Pollution Monitoring, Protection and Remediation. Skłodowski, P., (Ed.). Springer-Dordrecht. Vol.69. pp. 299-307.
  • Sushkova, S., Minkina, T., Turina, I., Mandzhieva, S., Batuer, T., Zamulina, I., Kızılkaya, R., 2016. Benzo[a]pyrene contamination in Rostov Region of Russian Federation: A 10-year retrospective of soil monitoring under the effect of long-term technogenic pollution. Eurasian Journal of Soil Science 5(2): 155-165.
  • Sushkova, S., Minkina, T., Turina, I., Mandzhieva, S.S., Bauer, T., Kızılkaya, R., Zamuline, I., 2017. Monitoring of benzo[a]pyrene content in soils under the effect of long-term technogenic polution. Journal of Geochemical Exploration 174: 100-106
  • Wang, T., Xue, Y., Zhou, M., Liang, A., Liu, J., Mei, M., Li, J., 2020. Effect of addition of rice husk on the fate and speciation of heavy metals in the bottom ash during dyeing sludge incineration. Journal of Cleaner Production 244: 118851.
  • Xu, D.M., Fu, R.B., Wang, J.X., Shi, Y.X., Guo, X.P., 2021. Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: Available stabilizing materials and associated evaluation methods-A critical review. Journal of Cleaner Production 321: 128730.
  • Zhou, P., Adeel, M., Shakoor, N., Guo, M., Hao, Y., Azeem, I., Rui, Y., 2021. Application of nanoparticles alleviates heavy metals stress and promotes plant growth an overview. Nanomaterials 11(1): 26.
  • Smirnov, P.V., Konstantinov, A.O., Gursky, H.J., 2017. Petrology and industrial application of main diatomite deposits in the Transuralian region (Russian Federation). Environmental Earth Sciences 76(20): 1-19.
  • Smirnov, P., Konstantinov, A.O., 2016. Comparative studies of Eocene and Paleocene diatomite from Trans-Urals (on the example of Kamyshlov deposit and section Brusyana). Bulletin of the Tomsk Polytechnic University - Geo Assets Engineering 327(11): 96-104.
Yıl 2023, Cilt: 12 Sayı: 1, 1 - 9, 01.01.2023
https://doi.org/10.18393/ejss.1177672

Öz

Kaynakça

  • Abdel-Shafy, H.I., Mansour, M.S.M., 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum 25(1): 107–123.
  • Bain, E.J., Calo, J.M., Spitz-Steinberg, R., Kirchner, J., Axén J., 2010. Electrosorption Electrodesorption of arsenic on a granular activated carbon in the presence of other heavy metals. Energy and Fuels 24(6): 3415-3421.
  • Bauer, T., Linnik, V., Minkina, T., Mandzhieva, S., Nevidomskaya, D., 2018. Ecological–geochemical studies of technogenic soils in the flood plain landscapes of the Seversky Donets, Lower Don Basin. Geochemistry International 10: 992–1002.
  • Bauer, T., Minkina, T., Mandzhieva, S., Burachevskaya, M., Zharkova, M., 2020. Biochar application to detoxification of the heavy metal-contaminated fluvisols. E3S Web of Conferences XIII International Scientific and Practical Conference “State and Prospects for the Development of Agribusiness – INTERAGROMASH 2020” 175: 09009.
  • Bauer, T., Minkina, T., Sushkova, S., Rajput, V., Tereshenko, A., Nazarenko, A., Mandzhieva, S., Sushkov, A., 2020. Mechanisms of copper immobilization in fluvisol after the carbon sorbent applying. Eurasian Journal of Soil Science 9(4): 356-361.
  • Ben-Ali, S., Jaouali, I., Souissi-Najar, S., Ouederni, A., 2017. Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal. Journal of Cleaner Production 142(4): 3809-3821.
  • Bernard, L., Sawallisch, A., Heinze, S., Joergensen, R., Vohland, M., 2015. Usefulness of middle infrared spectroscopy for an estimation of chemical and biological soil properties – Underlying principles and comparison of different software packages. Soil Biology and Biochemistry 86: 116-125.
  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M.B., Scheckel, K., 2014. Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize?. Journal of Hazardous Materials 266: 141-166.
  • Chen, H., Yuan, X., Xiong, T., Jiang, L., Wang, H., Wu, Z., 2020. Biochar facilitated hydroxyapatite/calcium silicate hydrate for remediation of heavy metals contaminated soils. Water, Air, and Soil Pollution 231: 66.
  • Cheng, P., Zhang, S., Wang, Q., Feng, X., Zhang, S., Sun, Y., Wang, F., 2021. Contribution of nano-zero-valent iron and arbuscular mycorrhizal fungi to phytoremediation of heavy metal-contaminated soil. Nanomaterials 11(5): 1264.
  • Chikhi, M., Balask, F., Benchaabi, R., Ayat, A., Maameche, K., Meniai, A.H., 2011. Experimental study of coupling complexation-adsorption of Cu(II) on activated carbon. Energy Procedia 6: 284–291.
  • Dietz K.J., Baier, M., Krämer, U., 1999. Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Heavy metal stress in plants. Dietz, K.J., (Ed.). Springer-Verlag Berlin, Heidelberg, pp. 73-97.
  • Ding, K., Luo, Y., 2005. Bioremediation of copper and benzo[a]pyrene–contaminated soil by alfalfa J. Journal of Agro-Environment Science 24(4): 766–770.
  • Eeshwarasinghe, D., Loganathan, P., Vigneswaran, S., 2019. Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon. Chemosphere 223: 616-627.
  • Fedorenko, A.G., Minkina, T.M., Chernikova, N.P., Fedorenko, G.M., Mandzhieva, S.S., Rajput, V.D., Burachevskaya, M.V., Chaplygin, V.A., Bauer, T.V., Sushkova, S.N., Soldatov, A.V., 2021. The toxic effect of CuO of different dispersion degrees on the structure and ultrastructure of spring barley cells (Hordeum sativum distichum). Environmental Geochemistry and Health 43: 1673–1687.
  • Feng, N., Ghoveisi, H., Bitton, G., Bonzongo, J.C.J., 2016. Removal of phyto-accessible copper from contaminated soils using zero valent iron amendment and magnetic separation methods: Assessment of residual toxicity using plant and MetPLATE™ studies. Environmental Pollution 219: 9–18.
  • Gholizadeh, M., Hu, X., 2021. Removal of heavy metals from soil with biochar composite: A critical review of the mechanism. Journal of Environmental Chemical Engineering 9(5): 105830.
  • Gutiérrez-Ginés, M., Hernández, A., Pérez-Leblic, M., Pastor, J., Vangronsveld, J., 2014. Phytoremediation of soils co-contaminated by organic compounds and heavy metals: Bioassays with Lupinus luteus L. and associated endophytic bacteria. Journal of Environmental Management 143: 197–207.
  • Kabata-Pendias, A., 2011. Trace Elements in Soils and Plants. 4th Edition. CRC Press Boca Raton, USA. 548p.
  • Kotyak, P.A., 2019. Assessment of the toxic condition of sod-podzolic soil at different food levels. In: Fertility management and agroecological improvement. Kotyak, P.A. (Ed.). 25 April 2019, Yaroslavl, Russia. pp. 49-54. [in Russian].
  • Kotyak, P.A., Chebykina, E.V., Voronin, A.N., 2019. Estimation of toxicity of sod-podzolyy soil depending on applicable agricultures. In: Actual problems of environmental management, water use, agrochemistry, soil science and ecology. Kotyak, P.A., Chebykina, E.V., Voronin, A.N. (Eds.). 18 April 2019. Omsk, Russia. pp.696–702. [in Russian].
  • Kumar, V., Pandita, S., Sidhu, G.P.S., Sharma, A., Khanna, K., Kaur, P., Bali, A.S., Setia, R., 2021. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere 262: 127810.
  • Li, S., Song, K., Zhao, D., Rugarabamu, J., Diao, R., Gu, Y., 2020. Molecular simulation of benzene adsorption on different activated carbon under different temperatures. Microporous and Mesoporous Materials 302: 110220.
  • Matsumoto, H.K., Okada, E., Takahashi, E., 1979. Excretion products of maize roots from seedling to seed development stage. Plant and Soil 53: 17–26.
  • Minkina, T.M., Nazarenko, O.G., Motuzova, G.V, Mandzhieva, S.S., 2009. Group composition of heavy metal compounds in the soils contaminated by emissions from the Novocherkassk power station. Eurasian Soil Science 42(13): 1533–1542.
  • Minkina, T.M., Soldatov, A.V., Motuzova, G.V., Podkovyrina, Y.S., Nevidomskaya, D.G., 2013. Molecular-structural analysis of the Cu (II) ion in ordinary chernozem: Evidence from XANES spectroscopy and methods of molecular dynamics. Doklady Earth Sciences 449: 418–421.
  • Minkina, T., Fedorov, A., Nevidomskaya, D., Mandzhieva, S,. Kozlova M., 2016. Specific features of content and mobility of heavy metals in soils of floodplain of the Don River. Arid Ecosystems 6: 70–79.
  • Mousavi, S.J., Parvini, M., Ghorbani, M., 2018. Adsorption of heavy metals (Cu2+ and Zn2+) on novel bifunctional ordered mesoporous silica: Optimization by response surface methodology. Journal of the Taiwan Institute of Chemical Engineers 84: 123-141.
  • Pinskii, D.L., Minkina, T.M., Bauer, T.V., Nevidomskaya, D.G., Mandzhieva, S.S., Burachevskaya, M.V., 2018. Copper adsorption by chernozem soils and parent rocks in Southern Russia. Geochemistry International 56(3): 266–275.
  • Rajput, V.D., Minkina, T., Morteza, F., Kumari, A., Khan, M., Mandzhieva, S., Sushkova, S., El-Ramady, H., Verma, K.K., Singh, A., Eric, D. van Hullebusch., Kumar, R., 2021a. Singh effects of silicon and silicon-based nanoparticles on rhizosphere microbiome. Biology 10: 791.
  • Rajput, V., Chaplygin, V., Gorovtsov, A., Fedorenko, A., Azarov, A., Chernikova, N., Barakhov, A., Minkina, T., Maksimov, A., Mandzhieva, S., Sushkova, S., 2021b. Assessing the toxicity and accumulation of bulk- and nanoCuO in Hordeum sativum L. Environmental Geochemistry and Health 43: 2443–2454.
  • Singh, H., Verma, A., Kumar, M., Sharma, R., Gupta, R., Kaur, M., Negi, M., Sharma, S.K., 2017. Phytoremediation: A green technology to clean up the sites with low and moderate level of heavy metals. Austin Biochemistry 2(2): 1012.
  • Skłodowski, P., Maciejewska, A., Kwiatkowska, J., 2006. The effect of organic matter from brown coal on bioavailability of heavy metals in contaminated soils, In: Soil and Water Pollution Monitoring, Protection and Remediation. Skłodowski, P., (Ed.). Springer-Dordrecht. Vol.69. pp. 299-307.
  • Sushkova, S., Minkina, T., Turina, I., Mandzhieva, S., Batuer, T., Zamulina, I., Kızılkaya, R., 2016. Benzo[a]pyrene contamination in Rostov Region of Russian Federation: A 10-year retrospective of soil monitoring under the effect of long-term technogenic pollution. Eurasian Journal of Soil Science 5(2): 155-165.
  • Sushkova, S., Minkina, T., Turina, I., Mandzhieva, S.S., Bauer, T., Kızılkaya, R., Zamuline, I., 2017. Monitoring of benzo[a]pyrene content in soils under the effect of long-term technogenic polution. Journal of Geochemical Exploration 174: 100-106
  • Wang, T., Xue, Y., Zhou, M., Liang, A., Liu, J., Mei, M., Li, J., 2020. Effect of addition of rice husk on the fate and speciation of heavy metals in the bottom ash during dyeing sludge incineration. Journal of Cleaner Production 244: 118851.
  • Xu, D.M., Fu, R.B., Wang, J.X., Shi, Y.X., Guo, X.P., 2021. Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: Available stabilizing materials and associated evaluation methods-A critical review. Journal of Cleaner Production 321: 128730.
  • Zhou, P., Adeel, M., Shakoor, N., Guo, M., Hao, Y., Azeem, I., Rui, Y., 2021. Application of nanoparticles alleviates heavy metals stress and promotes plant growth an overview. Nanomaterials 11(1): 26.
  • Smirnov, P.V., Konstantinov, A.O., Gursky, H.J., 2017. Petrology and industrial application of main diatomite deposits in the Transuralian region (Russian Federation). Environmental Earth Sciences 76(20): 1-19.
  • Smirnov, P., Konstantinov, A.O., 2016. Comparative studies of Eocene and Paleocene diatomite from Trans-Urals (on the example of Kamyshlov deposit and section Brusyana). Bulletin of the Tomsk Polytechnic University - Geo Assets Engineering 327(11): 96-104.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Anatoly Barakhov Bu kişi benim 0000-0003-0467-729X

Natalia Chernikova Bu kişi benim 0000-0003-4188-727X

Tamara Dudnikova Bu kişi benim 0000-0002-8436-0198

Andrey Barbashev Bu kişi benim 0000-0003-1857-948X

Svetlana Sushkova Bu kişi benim 0000-0003-3470-9627

Saglara Mandzhieva Bu kişi benim 0000-0001-6000-2209

Vishnu D Rajput Bu kişi benim 0000-0002-6802-4805

Rıdvan Kızılkaya Bu kişi benim 0000-0001-7475-9851

Elizabeth Konstantinova Bu kişi benim 0000-0002-9836-8721

Dmitry Bren Bu kişi benim 0000-0003-0544-8560

Tatiana Minkina Bu kişi benim 0000-0003-3022-0883

Alexander Konstantinov Bu kişi benim 0000-0002-6950-2207

Yayımlanma Tarihi 1 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 1

Kaynak Göster

APA Barakhov, A., Chernikova, N., Dudnikova, T., Barbashev, A., vd. (2023). Role of sorbents in early growth of barley under copper and benzo(a)pyrene contaminated soils. Eurasian Journal of Soil Science, 12(1), 1-9. https://doi.org/10.18393/ejss.1177672