Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 13 Sayı: 4, 294 - 302, 30.09.2024
https://doi.org/10.18393/ejss.1497455

Öz

Kaynakça

  • Abhishek, K., Srivastava, A., Vimal, V., Gupta, A. K., Bhujbal, S. K., Biswas, J. K., Singh, L., Ghosh, P., Pandey, A., Sharma, P, Kumar, M., 2022. Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: A state-of-the-art review. Science of The Total Environment 853: 158562.
  • Acir, N., Günal, H., Celik, I., Barut, Z. B., Budak, M., Kılıç, Ş., 2022. Effects of long-term conventional and conservational tillage systems on biochemical soil health indicators in the Mediterranean region. Archives of Agronomy and Soil Science 68(6): 795-808.
  • Adetunji, A.T., Ncube, B., Mulidzi, R., Lewu, F.B., 2020. Potential use of soil enzymes as soil quality indicators in agriculture. In: Frontiers in soil and environmental microbiology. Nayak, S.K., Mishra, B.B. (Eds.). Boca Raton: CRC Press. pp. 57-64.
  • Birol, M., 2020. Determining the effects of two different biochars on crop yields and soil quality. Tokat Gaziosmanpasa University, Graduate School of Natural and Applied Sciences, Department of Soil Science and Plant Nutrition. 273p. PhD Thesis. in Turkish
  • Burns, R.G., DeForest, J.L., Marxsen, J., Sinsabaugh, R.L., Stromberger, M.E., Wallenstein, M.D., Weintraub, M.N., Zoppini, A., 2013. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology and Biochemistry 58: 216-234.
  • Chen, J., Sun, X., Li, L., Liu, X., Zhang, B., Zheng, J., Pan, G., 2016. Change in active microbial community structure, abundance and carbon cycling in an acid rice paddy soil with the addition of biochar. European Journal of Soil Science 67(6): 857-867.
  • Chintala, R., Schumacher, T.E., Kumar, S., Malo, D.D., Rice, J.A., Bleakley, B., Chilom, G., Clay. D., Julson, J.L., Pariernik, S.K., Gu, Z.R., 2014. Molecular characterization of biochars and their influence on microbiological properties of soil. Journal of Hazardous Materials 279: 244-256.
  • Clemente, J.S., Beauchemin, S., Thibault, Y., MacKinnon, T., Smith, D., 2018. Differentiating inorganics in biochars produced at commercial scale using principal component analysis. ACS Omega 3(6): 6931-6944.
  • Demisie, W., Liu, Z., Zhang, M., 2014. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena 121: 214-221.
  • Eivazi, F., Tabatabai, M.A., 1988. Glucosidases and galactosidases in soils. Soil Biology and Biochemistry 20(5): 601-606.
  • Feng, J., Yu, D., Sinsabaugh, R. L., Moorhead, D. L., Andersen, M. N., Smith, P., Song, Y., Li, X., Huang, Q., Chen, J., 2023. Trade‐offs in carbon‐degrading enzyme activities limit long‐term soil carbon sequestration with biochar addition. Biological Reviews 98(4): 1184-1199.
  • Foster, E.J., Fogle, E.J., Cotrufo, M.F., 2018. Sorption to biochar impacts β-glucosidase and phosphatase enzyme activities. Agriculture 8(10): 158.
  • Foster, E.J., Hansen, N., Wallenstein, M., Cotrufo, M.F., 2016. Biochar and manure amendments impact soil nutrients and microbial enzymatic activities in a semi-arid irrigated maize cropping system. Agriculture, Ecosystems & Environment 233: 404-414.
  • Gross, A., Bromm, T., Glaser, B., 2021. Soil organic carbon sequestration after biochar application: A global meta-analysis. Agronomy 11(12): 2474.
  • Gülser, C., Ekberli, İ., Gülser, F., 2021. Effects of deforestation on soil properties and organic carbon stock of a hillslope position land in Black Sea Region of Turkey. Eurasian Journal of Soil Science 10(4): 278 - 284.
  • Günal, E., Erdem, H., 2021. Effects of three different biochars enriched with dairy effluent on wheat growth. Levantine Journal of Applied Sciences 1(1): 1-15.
  • Günal, E., Erdem, H., Demirbaş, A. 2018. Effects of three biochar types on activity of β-glucosidase enzyme in two agricultural soils of different textures. Archives of Agronomy and Soil Science 64(14): 1963-1974.
  • Günal, H., Bayram, Ö., Günal, E., Erdem, H., 2019. Characterization of soil amendment potential of 18 different biochar types produced by slow pyrolysis. Eurasian Journal of Soil Science 8(4): 329 - 339.
  • Jaaf, S.M.M.A., Li, Y., Günal, E., El Enshasy, H.A., Salmen, S.H., Sürücü, A., 2022. The impact of corncob biochar and poultry manure on pepper (Capsicum annuum L.) growth and chemical properties of a silty-clay soil. Saudi Journal of Biological Sciences 29(4): 2998-3005.
  • Long, V.V., Dung, T.V., 2023. Reducing nitrogen fertilizer combined with biochar amendment improves soil quality and increases grain yield in the intensive rice cultivation system. Eurasian Journal of Soil Science 12(3): 222-228.
  • Moreno, J.L., Bastida, F., Díaz-López, M., Li, Y., Zhou, Y., López-Mondéjar, R., Li, Y., Zhou, Y., López-Mondéjar, R., Benavante-Ferraces, I., Rojas, R., Rey, A., García-Gil, J. C., Plaza, C. 2022. Response of soil chemical properties, enzyme activities and microbial communities to biochar application and climate change in a Mediterranean agroecosystem. Geoderma 407: 115536.
  • Murtaza, G., Ahmed, Z., Usman, M., 2022. Feedstock type, pyrolysis temperature and acid modification effects on physiochemical attributes of biochar and soil quality. Arabian Journal of Geosciences 15(3): 305.
  • Pérez‐Guzmán, L., Lower, B.H., Dick, R.P., 2020. Corn and hardwood biochars affected soil microbial community and enzyme activities. Agrosystems, Geosciences & Environment 3(1): e20082.
  • Pokharel, P., Kwak, J.H., Ok, Y.S., Chang, S.X., 2018. Pine sawdust biochar reduces GHG emission by decreasing microbial and enzyme activities in forest and grassland soils in a laboratory experiment. Science of the Total Environment 625: 1247-1256.
  • Rahmanian, M., Khadem, A., 2023. The effects of biochar on soil extra and intracellular enzymes activity. Biomass Conversion and Biorefinery
  • Raiesi, F. Khadem, A., 2019. Short-term effects of maize residue biochar on kinetic and thermodynamic parameters of soil β-glucosidase. Biochar 1(2): 213-227.
  • Rhoades, J.D., 1996. Salinity: Electrical conductivity and total dissolved solids. In: Methods of soil analysis. Part 3 Chemical methods. Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N.,
  • Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.). SSSA-ASA. Madison, WI, USA. pp. 417–435.
  • Schmidt, H.P., Kammann, C., Hagemann, N., Leifeld, J., Bucheli, T.D., Sánchez Monedero, M.A., Cayuela, M.L. 2021. Biochar in agriculture–A systematic review of 26 global meta‐analyses. GCB Bioenergy 13(11): 1708-1730.
  • Sial, T.A., Shaheen, S.M., Lan, Z., Korai, P.K., Ghani, M.I., Khan, M.N., Syed, A.A., Ali, M.N.H.A., Abdelrahman, H., Ali, E.F., Rinkbele, J., Zhang, J., 2022. Addition of walnut shells biochar to alkaline arable soil caused contradictory effects on CO2 and N2O emissions, nutrients availability, and enzymes activity. Chemosphere 293: 133476.
  • Swaine, M., Obrike, R., Clark, J.M., Shaw, L.J. 2013. Biochar alteration of the sorption of substrates and products in soil enzyme assays. Applied and Environmental Soil Science Article ID 968682.
  • Tabatabai, M.A., 1994. Soil Enzymes. In: Methods of Soil Analysis Part 2 Microbiological and Biochemical Properties. Weaver, R.W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A. (Eds.). SSSA-ASA. Madison, WI, USA. pp. 775-833.
  • Thomas, G.W., 1996. Soil pH and soil acidity. In: Methods of soil analysis. Part 3 Chemical methods. Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T.,
  • Sumner, M.E. (Eds.). SSSA-ASA. Madison, WI, USA. pp. 475–490.
  • Uchimiya, M., Lima, I.M., Klasson, K.T., Wartelle, L.H., 2010. Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80(8): 935-940.
  • Walkley, A., Black, C.A., 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37(1): 29–38.
  • Wang, S., Gao, P., Zhang, Q., Shi, Y., Guo, X., Lv, Q., Wu, W., Zhang, X., Li, M., Meng, Q., 2023. Biochar improves soil quality and wheat yield in saline-alkali soils beyond organic fertilizer in a 3-year field trial. Environmental Science and Pollution Research 30(7): 19097-19110.
  • Wang, X., Song, D., Liang, G., Zhang, Q., Ai, C., Zhou, W., 2015. Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil. Applied Soil Ecology 96: 265-272.
  • Wojewódzki, P., Lemanowicz, J., Debska, B., Haddad, S.A., 2022. Soil enzyme activity response under the amendment of different types of biochar. Agronomy 12(3): 569.
  • Xu, W., Xu, H., Delgado-Baquerizo, M., Gundale, M. J., Zou, X., Ruan, H., 2023. Global meta-analysis reveals positive effects of biochar on soil microbial diversity. Geoderma 436: 116528.
  • Yadav, V., Jain, S., Mishra, P., Khare, P., Shukla, A.K., Karak, T., Singh, A.K., 2019. Amelioration in nutrient mineralization and microbial activities of sandy loam soil by short term field aged biochar. Applied Soil Ecology, 138: 144-155.
  • Yoo, G., Kang, H., 2012. Effects of biochar addition on greenhouse gas emissions and microbial responses in a short‐term laboratory experiment. Journal of Environmental Quality 41(4): 1193-1202.
  • Zhang, B., Li, Y., Ren, T., Tian, Z., Wang, G., He, X., Tian, C., 2014. Short-term effect of tillage and crop rotation on microbial community structure and enzyme activities of a clay loam soil. Biology and Fertility of Soils 50: 1077-1085.
  • Gee, G.W., Bouder, J.W., 1986. Particle size analysis. In: In: Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5.1, Second Edition. Klute, A. (Ed.). American Society of Agronomy, Soil Science Society of America, WI, Madison, USA. pp. 383-411.

Response of β-glucosidase enzyme activity of soil to biochar applications in a crop rotation at Blacksea agroecosystem

Yıl 2024, Cilt: 13 Sayı: 4, 294 - 302, 30.09.2024
https://doi.org/10.18393/ejss.1497455

Öz

The use of biochar has emerged a potentially effective approach to improve soil function and promote crop performance. However, the specific impact of biochar on β-glucosidase enzyme activity (BGA) within crop rotation systems in the Black Sea agroecosystem requires further investigation. This study was conducted to determine the effects of rice husk biochar (RHB) and poultry manure biochar (PMB) on BGA in soils. Six biochar doses (0-control, 10, 20, 30, 40 and 50 t ha-1) were applied at the beginning of two wheat-cabbage red pepper rotation periods. The mean BGA at second rotation (73.71 µg pNP g-1) was significantly lower compared to the BGA of the first period (93.39 µg pNP g-1). The BGA value in control (94.51 µg pNP g-1) decreased with increasing biochar application doses (76.05 µg pNP g-1, 50 t ha-1) treatment. The mean BGA value in PMB treatment was slightly higher than that of RHB, but it was not statistically different between two biochar types. However, the decrease in BGA value (25.0%) in the highest RHB dose compared to control was more than two-fold compared to the decrease in PMB application (12.1%). The difference in carbon/nitrogen ratio between RHB and PMB can be attributed to the variation in BGA values observed at the application of same biochar doses. The decrease in BGA over the course of the two rotation cycles implies that biochar may have a long-term influence on soil carbon cycling.

Kaynakça

  • Abhishek, K., Srivastava, A., Vimal, V., Gupta, A. K., Bhujbal, S. K., Biswas, J. K., Singh, L., Ghosh, P., Pandey, A., Sharma, P, Kumar, M., 2022. Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: A state-of-the-art review. Science of The Total Environment 853: 158562.
  • Acir, N., Günal, H., Celik, I., Barut, Z. B., Budak, M., Kılıç, Ş., 2022. Effects of long-term conventional and conservational tillage systems on biochemical soil health indicators in the Mediterranean region. Archives of Agronomy and Soil Science 68(6): 795-808.
  • Adetunji, A.T., Ncube, B., Mulidzi, R., Lewu, F.B., 2020. Potential use of soil enzymes as soil quality indicators in agriculture. In: Frontiers in soil and environmental microbiology. Nayak, S.K., Mishra, B.B. (Eds.). Boca Raton: CRC Press. pp. 57-64.
  • Birol, M., 2020. Determining the effects of two different biochars on crop yields and soil quality. Tokat Gaziosmanpasa University, Graduate School of Natural and Applied Sciences, Department of Soil Science and Plant Nutrition. 273p. PhD Thesis. in Turkish
  • Burns, R.G., DeForest, J.L., Marxsen, J., Sinsabaugh, R.L., Stromberger, M.E., Wallenstein, M.D., Weintraub, M.N., Zoppini, A., 2013. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology and Biochemistry 58: 216-234.
  • Chen, J., Sun, X., Li, L., Liu, X., Zhang, B., Zheng, J., Pan, G., 2016. Change in active microbial community structure, abundance and carbon cycling in an acid rice paddy soil with the addition of biochar. European Journal of Soil Science 67(6): 857-867.
  • Chintala, R., Schumacher, T.E., Kumar, S., Malo, D.D., Rice, J.A., Bleakley, B., Chilom, G., Clay. D., Julson, J.L., Pariernik, S.K., Gu, Z.R., 2014. Molecular characterization of biochars and their influence on microbiological properties of soil. Journal of Hazardous Materials 279: 244-256.
  • Clemente, J.S., Beauchemin, S., Thibault, Y., MacKinnon, T., Smith, D., 2018. Differentiating inorganics in biochars produced at commercial scale using principal component analysis. ACS Omega 3(6): 6931-6944.
  • Demisie, W., Liu, Z., Zhang, M., 2014. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena 121: 214-221.
  • Eivazi, F., Tabatabai, M.A., 1988. Glucosidases and galactosidases in soils. Soil Biology and Biochemistry 20(5): 601-606.
  • Feng, J., Yu, D., Sinsabaugh, R. L., Moorhead, D. L., Andersen, M. N., Smith, P., Song, Y., Li, X., Huang, Q., Chen, J., 2023. Trade‐offs in carbon‐degrading enzyme activities limit long‐term soil carbon sequestration with biochar addition. Biological Reviews 98(4): 1184-1199.
  • Foster, E.J., Fogle, E.J., Cotrufo, M.F., 2018. Sorption to biochar impacts β-glucosidase and phosphatase enzyme activities. Agriculture 8(10): 158.
  • Foster, E.J., Hansen, N., Wallenstein, M., Cotrufo, M.F., 2016. Biochar and manure amendments impact soil nutrients and microbial enzymatic activities in a semi-arid irrigated maize cropping system. Agriculture, Ecosystems & Environment 233: 404-414.
  • Gross, A., Bromm, T., Glaser, B., 2021. Soil organic carbon sequestration after biochar application: A global meta-analysis. Agronomy 11(12): 2474.
  • Gülser, C., Ekberli, İ., Gülser, F., 2021. Effects of deforestation on soil properties and organic carbon stock of a hillslope position land in Black Sea Region of Turkey. Eurasian Journal of Soil Science 10(4): 278 - 284.
  • Günal, E., Erdem, H., 2021. Effects of three different biochars enriched with dairy effluent on wheat growth. Levantine Journal of Applied Sciences 1(1): 1-15.
  • Günal, E., Erdem, H., Demirbaş, A. 2018. Effects of three biochar types on activity of β-glucosidase enzyme in two agricultural soils of different textures. Archives of Agronomy and Soil Science 64(14): 1963-1974.
  • Günal, H., Bayram, Ö., Günal, E., Erdem, H., 2019. Characterization of soil amendment potential of 18 different biochar types produced by slow pyrolysis. Eurasian Journal of Soil Science 8(4): 329 - 339.
  • Jaaf, S.M.M.A., Li, Y., Günal, E., El Enshasy, H.A., Salmen, S.H., Sürücü, A., 2022. The impact of corncob biochar and poultry manure on pepper (Capsicum annuum L.) growth and chemical properties of a silty-clay soil. Saudi Journal of Biological Sciences 29(4): 2998-3005.
  • Long, V.V., Dung, T.V., 2023. Reducing nitrogen fertilizer combined with biochar amendment improves soil quality and increases grain yield in the intensive rice cultivation system. Eurasian Journal of Soil Science 12(3): 222-228.
  • Moreno, J.L., Bastida, F., Díaz-López, M., Li, Y., Zhou, Y., López-Mondéjar, R., Li, Y., Zhou, Y., López-Mondéjar, R., Benavante-Ferraces, I., Rojas, R., Rey, A., García-Gil, J. C., Plaza, C. 2022. Response of soil chemical properties, enzyme activities and microbial communities to biochar application and climate change in a Mediterranean agroecosystem. Geoderma 407: 115536.
  • Murtaza, G., Ahmed, Z., Usman, M., 2022. Feedstock type, pyrolysis temperature and acid modification effects on physiochemical attributes of biochar and soil quality. Arabian Journal of Geosciences 15(3): 305.
  • Pérez‐Guzmán, L., Lower, B.H., Dick, R.P., 2020. Corn and hardwood biochars affected soil microbial community and enzyme activities. Agrosystems, Geosciences & Environment 3(1): e20082.
  • Pokharel, P., Kwak, J.H., Ok, Y.S., Chang, S.X., 2018. Pine sawdust biochar reduces GHG emission by decreasing microbial and enzyme activities in forest and grassland soils in a laboratory experiment. Science of the Total Environment 625: 1247-1256.
  • Rahmanian, M., Khadem, A., 2023. The effects of biochar on soil extra and intracellular enzymes activity. Biomass Conversion and Biorefinery
  • Raiesi, F. Khadem, A., 2019. Short-term effects of maize residue biochar on kinetic and thermodynamic parameters of soil β-glucosidase. Biochar 1(2): 213-227.
  • Rhoades, J.D., 1996. Salinity: Electrical conductivity and total dissolved solids. In: Methods of soil analysis. Part 3 Chemical methods. Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N.,
  • Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.). SSSA-ASA. Madison, WI, USA. pp. 417–435.
  • Schmidt, H.P., Kammann, C., Hagemann, N., Leifeld, J., Bucheli, T.D., Sánchez Monedero, M.A., Cayuela, M.L. 2021. Biochar in agriculture–A systematic review of 26 global meta‐analyses. GCB Bioenergy 13(11): 1708-1730.
  • Sial, T.A., Shaheen, S.M., Lan, Z., Korai, P.K., Ghani, M.I., Khan, M.N., Syed, A.A., Ali, M.N.H.A., Abdelrahman, H., Ali, E.F., Rinkbele, J., Zhang, J., 2022. Addition of walnut shells biochar to alkaline arable soil caused contradictory effects on CO2 and N2O emissions, nutrients availability, and enzymes activity. Chemosphere 293: 133476.
  • Swaine, M., Obrike, R., Clark, J.M., Shaw, L.J. 2013. Biochar alteration of the sorption of substrates and products in soil enzyme assays. Applied and Environmental Soil Science Article ID 968682.
  • Tabatabai, M.A., 1994. Soil Enzymes. In: Methods of Soil Analysis Part 2 Microbiological and Biochemical Properties. Weaver, R.W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A. (Eds.). SSSA-ASA. Madison, WI, USA. pp. 775-833.
  • Thomas, G.W., 1996. Soil pH and soil acidity. In: Methods of soil analysis. Part 3 Chemical methods. Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T.,
  • Sumner, M.E. (Eds.). SSSA-ASA. Madison, WI, USA. pp. 475–490.
  • Uchimiya, M., Lima, I.M., Klasson, K.T., Wartelle, L.H., 2010. Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80(8): 935-940.
  • Walkley, A., Black, C.A., 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37(1): 29–38.
  • Wang, S., Gao, P., Zhang, Q., Shi, Y., Guo, X., Lv, Q., Wu, W., Zhang, X., Li, M., Meng, Q., 2023. Biochar improves soil quality and wheat yield in saline-alkali soils beyond organic fertilizer in a 3-year field trial. Environmental Science and Pollution Research 30(7): 19097-19110.
  • Wang, X., Song, D., Liang, G., Zhang, Q., Ai, C., Zhou, W., 2015. Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil. Applied Soil Ecology 96: 265-272.
  • Wojewódzki, P., Lemanowicz, J., Debska, B., Haddad, S.A., 2022. Soil enzyme activity response under the amendment of different types of biochar. Agronomy 12(3): 569.
  • Xu, W., Xu, H., Delgado-Baquerizo, M., Gundale, M. J., Zou, X., Ruan, H., 2023. Global meta-analysis reveals positive effects of biochar on soil microbial diversity. Geoderma 436: 116528.
  • Yadav, V., Jain, S., Mishra, P., Khare, P., Shukla, A.K., Karak, T., Singh, A.K., 2019. Amelioration in nutrient mineralization and microbial activities of sandy loam soil by short term field aged biochar. Applied Soil Ecology, 138: 144-155.
  • Yoo, G., Kang, H., 2012. Effects of biochar addition on greenhouse gas emissions and microbial responses in a short‐term laboratory experiment. Journal of Environmental Quality 41(4): 1193-1202.
  • Zhang, B., Li, Y., Ren, T., Tian, Z., Wang, G., He, X., Tian, C., 2014. Short-term effect of tillage and crop rotation on microbial community structure and enzyme activities of a clay loam soil. Biology and Fertility of Soils 50: 1077-1085.
  • Gee, G.W., Bouder, J.W., 1986. Particle size analysis. In: In: Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5.1, Second Edition. Klute, A. (Ed.). American Society of Agronomy, Soil Science Society of America, WI, Madison, USA. pp. 383-411.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Toprak Bilimleri ve Bitki Besleme (Diğer)
Bölüm Articles
Yazarlar

Murat Birol 0000-0003-1947-3193

Hikmet Günal 0000-0002-4648-2645

Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 28 Aralık 2023
Kabul Tarihi 4 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 4

Kaynak Göster

APA Birol, M., & Günal, H. (2024). Response of β-glucosidase enzyme activity of soil to biochar applications in a crop rotation at Blacksea agroecosystem. Eurasian Journal of Soil Science, 13(4), 294-302. https://doi.org/10.18393/ejss.1497455