Research Article
BibTex RIS Cite

Year 2025, Volume: 14 Issue: 3, 270 - 279, 01.07.2025
https://doi.org/10.18393/ejss.1703816

Abstract

References

  • Anderson, J.P.E., 1982. Soil respiration. In. Methods of soil analysis, Part 2- Chemical and Microbiological Properties. Page, A.L., Keeney, D. R., Baker, D.E., Miller, R.H., Ellis, R. Jr., Rhoades, J.D. (Eds.). ASA-SSSA, Madison, Wisconsin, USA. pp. 831-871.
  • Anderson, J.P.E., Domsch, K.H., 1978. A physiological method for the quantative measurement of microbial biomass in soils. Soil Biology and Biochemistry 10: 215 – 221.
  • Arancon, N.Q., Edwards, C.A., Bierman, P., 2006. Influences of vermicomposts on field strawberries: Part 2 Effects on soil microbiological and chemical properties. Bioresource Technology 97(6): 831–840.
  • Beck, T.H., 1971. Die Messung derkKatalasen aktivität Von Böden. Zeitschrift für Pflanzenernährung und Bodenkunde 130(1): 68-81.
  • Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal 54(5): 464-465.
  • Bower, C.A., Wilcox L.V., 1965. Soluble Salts. In: Methods of soil analysis. Part 2. Chemical and microbiological properties. Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark F.E. (Eds.), Soil Science Society of America. Madison, Wisconsin, USA. pp. 933-951.
  • Bremner, J.M., 1965. Total nitrogen, In: Methods of soil analysis. Part 2. Chemical and microbiological properties. Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark F.E. (Eds.), Soil Science Society of America. Madison, Wisconsin, USA. pp. 1149-1176.
  • Demir, Z., 2021. Effects of vermicompost applications on Atterberg Limits and workability of soils under different soil moisture contents. Eurasian Journal of Soil Science 10(3): 215-221.
  • Durmuş, M., Kızılkaya, R., 2022. The effect of tomato waste compost on yield of tomato and some biological properties of soil. Agronomy 12(6): 1253.
  • Gong, P., 1997. Dehydrogenase activity in soil: A comparison between the TTC and INT assay under their optimum conditions. Soil Biology and Biochemistry 29(2): 211-214.
  • Heald, W.R., 1965. Calcium and Magnesium. In: Methods of soil analysis. Part 2. Chemical and microbiological properties. Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark F.E. (Eds.), Soil Science Society of America. Madison, Wisconsin, USA. pp. 999-1010.
  • Hoffmann, G.G., Teicher, K. 1961. Ein Kolorimetrisches Verfahren zur Bestimmung der Urease Aktivitat in Böden. Zeitschrift für Pflanzenernährung und Bodenkunde 95(1): 55–63.
  • Hyder, S.I., Farooq, M., Sultan, T., Ali, A., Ali, M., Kiani, M.Z., Ahmad, S., Tabssam, T., 2015. Optimizing yield and nutrients content in tomato by vermicompost application under greenhouse conditions. Natural Resources 6: 457-464.
  • İslamzade, T., Baxishov, D., Guliyev, A., Kızılkaya, R., İslamzade, R., Ay, A., Huseynova, S., Mammadova, M., 2024. Soil fertility status, productivity challenges, and solutions in rice farming landscapes of Azerbaijan. Eurasian Journal of Soil Science 13(1): 70-78.
  • Jones, J.B., 2001. Laboratory guide for conducting soil tests and plant analyses. CRC Press, New York, USA. 363p.
  • Kızılkaya, R., 2008. Dehydrogenase activity in Lumbricus terrestris casts and surrounding soil affected by addition of different organic wastes and Zn. Bioresource Technology 99(5): 946–953.
  • Kızılkaya, R., Aşkın, T., Bayraklı, B., Sağlam, M., 2004. Microbiological characteristics of soils contaminated with heavy metals. European Journal of Soil Biology 40(2): 95-102.
  • Kızılkaya, R., Turkay, F.S.H., Turkmen, C., Durmus, M., 2012. Vermicompost effects on wheat yield and nutrient contents in soil and plant. Archives of Agronomy and Soil Science 58(S1): S175-S179.
  • Kim, Y.X., Son, S.Y., Lee, S., Lee, Y., Sung, J., Lee, C.H., 2022. Effects of limited water supply on metabolite composition in tomato fruits (Solanum lycopersicum L.) in two soils with different nutrient conditions. Frontiers in Plant Science 13: 983725.
  • Meli, S., Porto, M., Belligno, A., Bufo, S.A., Mazzatura, A., Scapa, A., 2002. Influence of irrigation with lagooned urban wastewater on chemical and microbiological soil parameters in a citrus orchard under Mediterranean condition. Science of The Total Environment 285: 69-77.
  • Montgomery, D.R., Biklé, A., 2021. Soil health and nutrient density: Beyond organic vs. conventional farming. Frontiers in Sustainable Food Systems 5: 699147.
  • Obbard, J.P., 2001. Ecotoxicological assessment of heavy metals in sewage sludge amended soils. Applied Geochemistry 16: 1405-1411.
  • Olsen,S.R., Dean, L.A., 1965. Phosphorus. In: Methods of soil analysis. Part 2. Chemical and microbiological properties. Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark F.E. (Eds.), Soil Science Society of America. Madison, Wisconsin, USA. pp. 1035-1049.
  • Padmanabhan, P. Cheema, A. Paliyath, G., 2016. Solanaceous fruits including tomato, eggplant, and peppers. In: Encyclopedia of Food and Health. Caballero, B., Finglas, P.M., Toldrá, F. (Eds.). Academic Press, pp. 24-32.
  • Pascual, J.A., Hernandez, T., Garcia, C., Ayuso, M., 1988. Enzymatic activities in an arid soil amend with urban organic wastes: laboratory experiment. Bioresource Technology 64: 131-138.
  • Peech, M., 1965. Hydrogen-Ion Activity. In: Methods of soil analysis. Part 2. Chemical and microbiological properties. Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark F.E. (Eds.), Soil Science Society of America. Madison, Wisconsin, USA. pp. 914-926.
  • Pepper, I.L., Gerba, C.P., Brendecke, J.W., 1995. Environmental microbiology: a laboratory manual. Academic Press Inc. New York, USA.
  • Pratt, P.F., 1965. Potassium. In: Methods of soil analysis. Part 2. Chemical and microbiological properties. Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark F.E. (Eds.), Soil Science Society of America. Madison, Wisconsin, USA. pp. 1022-1030.
  • Putti, F.F., de Queiroz Barcelos, J.P., Goes, B.C., Alves, R.F., Neto, M.M., da Silva, A.O., Filho, L.R.A.G., Zanetti, W.A.L., de Souza, A.V., 2023. Effects of water deficit on growth and productivity in tomato crops irrigated with water treated with very low-frequency electromagnetic resonance fields. Plants 12(21): 3721.
  • Rowell, D.L., 1996. Soil Science: methods and applications. Longman, UK. 350p.
  • Smith, J.L., Paul, E.A., 1990. Significance of soil microbial biomass estimation: Soil Biochemistry. Bollag, J.W., Stotzky, G. (Eds.). Volume 6, Marcel Dekker Inc. New York, USA. pp. 357-396.
  • Tahat, M.M., Alananbeh, K.M., Othman, Y.A., Leskovar, D.I., 2020. Soil Health and Sustainable Agriculture. Sustainability 12(12): 4859.
  • Toor, M.D., Ay, A., Ullah, I., Demirkaya, S., Kızılkaya, R., Mihoub, A., Zia, A., Jamal, A., Ghfar, A.A., Di Serio, A., Ronga, D., 2024. Vermicompost rate effects on soil fertility and morpho-physio-biochemical traits of lettuce. Horticulturae 10 (4): 418.
  • Trang, N.N.P., Chuong, N.V., 2025. The enhancement of soil fertility and baby maize output by Streptomyces panayensis and vermicompost. Eurasian Journal of Soil Science 14(2): 140-148.
  • Walkley, A., Black, C.A., 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37(1): 29–38.
  • Wang, X.X., Zhao, F., Zhang, G., Zhang, Y., Yang, L., 2017. Vermicompost improves tomato yield and quality and the biochemical properties of soils with different tomato planting history in a greenhouse study. Frontiers in Plant Science 8: 1978.
  • Yang, L., Zhao, F., Chang, Q., Li, T., Li, F., 2015. Effects of vermicomposts on tomato yield and quality and soil fertility in greenhouse under different soil water regimes. Agricultural Water Management 160: 98–105.

Effects of vermicompost application rates and irrigation regimes on tomato yield, nutrient uptake and soil properties under greenhouse conditions

Year 2025, Volume: 14 Issue: 3, 270 - 279, 01.07.2025
https://doi.org/10.18393/ejss.1703816

Abstract

Tomato (Solanum lycopersicum L.) is a widely cultivated horticultural crop that responds sensitively to both nutrient availability and water management. The use of vermicompost as an organic fertilizer offers potential to improve plant productivity and soil health, especially under conditions of limited irrigation. This greenhouse study aimed to investigate the effects of different vermicompost application rates and irrigation levels on tomato yield, leaf nutrient uptake, and post-harvest soil properties. The experiment was conducted using a clay soil with low fertility characteristics (organic matter 1.15%, total N 0.06%, available P 5.26 mg/kg) and vermicompost rich in nutrients (total N 1.52%, total P 0.46%, total K 2.85%). Treatments consisted of four vermicompost rates (0, 0.25, 0.5, and 1.0 t/da) combined with three irrigation levels (100%, 75%, and 50% of field capacity) in a completely randomized design with three replications. Tomato plants were grown under controlled greenhouse conditions, and yield per plant, leaf nutrient contents (N, P, K, Ca, Mg), post-harvest soil nutrient status, and biological properties (microbial biomass carbon, soil respiration, enzyme activities) were evaluated. Results indicated that both vermicompost and irrigation level significantly affected tomato yield, which increased from 4.90 kg/plant (control, 50% FC) to 8.00 kg/plant (1.0 t/da, 100% FC). Leaf nutrient concentrations and soil available N, P, K, Ca, and Mg were significantly improved with higher vermicompost doses. Soil microbial biomass and enzymatic activities also responded positively to vermicompost, while water stress had suppressive effects. The interaction between vermicompost and irrigation was generally not significant, suggesting additive but independent effects. In conclusion, the application of vermicompost at 1.0 t/da improved tomato yield, nutrient uptake, and soil quality indicators, even under moderate water stress. This study supports the integration of organic amendments and optimized irrigation as a sustainable strategy for tomato production in protected cultivation systems.

References

  • Anderson, J.P.E., 1982. Soil respiration. In. Methods of soil analysis, Part 2- Chemical and Microbiological Properties. Page, A.L., Keeney, D. R., Baker, D.E., Miller, R.H., Ellis, R. Jr., Rhoades, J.D. (Eds.). ASA-SSSA, Madison, Wisconsin, USA. pp. 831-871.
  • Anderson, J.P.E., Domsch, K.H., 1978. A physiological method for the quantative measurement of microbial biomass in soils. Soil Biology and Biochemistry 10: 215 – 221.
  • Arancon, N.Q., Edwards, C.A., Bierman, P., 2006. Influences of vermicomposts on field strawberries: Part 2 Effects on soil microbiological and chemical properties. Bioresource Technology 97(6): 831–840.
  • Beck, T.H., 1971. Die Messung derkKatalasen aktivität Von Böden. Zeitschrift für Pflanzenernährung und Bodenkunde 130(1): 68-81.
  • Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal 54(5): 464-465.
  • Bower, C.A., Wilcox L.V., 1965. Soluble Salts. In: Methods of soil analysis. Part 2. Chemical and microbiological properties. Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark F.E. (Eds.), Soil Science Society of America. Madison, Wisconsin, USA. pp. 933-951.
  • Bremner, J.M., 1965. Total nitrogen, In: Methods of soil analysis. Part 2. Chemical and microbiological properties. Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark F.E. (Eds.), Soil Science Society of America. Madison, Wisconsin, USA. pp. 1149-1176.
  • Demir, Z., 2021. Effects of vermicompost applications on Atterberg Limits and workability of soils under different soil moisture contents. Eurasian Journal of Soil Science 10(3): 215-221.
  • Durmuş, M., Kızılkaya, R., 2022. The effect of tomato waste compost on yield of tomato and some biological properties of soil. Agronomy 12(6): 1253.
  • Gong, P., 1997. Dehydrogenase activity in soil: A comparison between the TTC and INT assay under their optimum conditions. Soil Biology and Biochemistry 29(2): 211-214.
  • Heald, W.R., 1965. Calcium and Magnesium. In: Methods of soil analysis. Part 2. Chemical and microbiological properties. Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark F.E. (Eds.), Soil Science Society of America. Madison, Wisconsin, USA. pp. 999-1010.
  • Hoffmann, G.G., Teicher, K. 1961. Ein Kolorimetrisches Verfahren zur Bestimmung der Urease Aktivitat in Böden. Zeitschrift für Pflanzenernährung und Bodenkunde 95(1): 55–63.
  • Hyder, S.I., Farooq, M., Sultan, T., Ali, A., Ali, M., Kiani, M.Z., Ahmad, S., Tabssam, T., 2015. Optimizing yield and nutrients content in tomato by vermicompost application under greenhouse conditions. Natural Resources 6: 457-464.
  • İslamzade, T., Baxishov, D., Guliyev, A., Kızılkaya, R., İslamzade, R., Ay, A., Huseynova, S., Mammadova, M., 2024. Soil fertility status, productivity challenges, and solutions in rice farming landscapes of Azerbaijan. Eurasian Journal of Soil Science 13(1): 70-78.
  • Jones, J.B., 2001. Laboratory guide for conducting soil tests and plant analyses. CRC Press, New York, USA. 363p.
  • Kızılkaya, R., 2008. Dehydrogenase activity in Lumbricus terrestris casts and surrounding soil affected by addition of different organic wastes and Zn. Bioresource Technology 99(5): 946–953.
  • Kızılkaya, R., Aşkın, T., Bayraklı, B., Sağlam, M., 2004. Microbiological characteristics of soils contaminated with heavy metals. European Journal of Soil Biology 40(2): 95-102.
  • Kızılkaya, R., Turkay, F.S.H., Turkmen, C., Durmus, M., 2012. Vermicompost effects on wheat yield and nutrient contents in soil and plant. Archives of Agronomy and Soil Science 58(S1): S175-S179.
  • Kim, Y.X., Son, S.Y., Lee, S., Lee, Y., Sung, J., Lee, C.H., 2022. Effects of limited water supply on metabolite composition in tomato fruits (Solanum lycopersicum L.) in two soils with different nutrient conditions. Frontiers in Plant Science 13: 983725.
  • Meli, S., Porto, M., Belligno, A., Bufo, S.A., Mazzatura, A., Scapa, A., 2002. Influence of irrigation with lagooned urban wastewater on chemical and microbiological soil parameters in a citrus orchard under Mediterranean condition. Science of The Total Environment 285: 69-77.
  • Montgomery, D.R., Biklé, A., 2021. Soil health and nutrient density: Beyond organic vs. conventional farming. Frontiers in Sustainable Food Systems 5: 699147.
  • Obbard, J.P., 2001. Ecotoxicological assessment of heavy metals in sewage sludge amended soils. Applied Geochemistry 16: 1405-1411.
  • Olsen,S.R., Dean, L.A., 1965. Phosphorus. In: Methods of soil analysis. Part 2. Chemical and microbiological properties. Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark F.E. (Eds.), Soil Science Society of America. Madison, Wisconsin, USA. pp. 1035-1049.
  • Padmanabhan, P. Cheema, A. Paliyath, G., 2016. Solanaceous fruits including tomato, eggplant, and peppers. In: Encyclopedia of Food and Health. Caballero, B., Finglas, P.M., Toldrá, F. (Eds.). Academic Press, pp. 24-32.
  • Pascual, J.A., Hernandez, T., Garcia, C., Ayuso, M., 1988. Enzymatic activities in an arid soil amend with urban organic wastes: laboratory experiment. Bioresource Technology 64: 131-138.
  • Peech, M., 1965. Hydrogen-Ion Activity. In: Methods of soil analysis. Part 2. Chemical and microbiological properties. Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark F.E. (Eds.), Soil Science Society of America. Madison, Wisconsin, USA. pp. 914-926.
  • Pepper, I.L., Gerba, C.P., Brendecke, J.W., 1995. Environmental microbiology: a laboratory manual. Academic Press Inc. New York, USA.
  • Pratt, P.F., 1965. Potassium. In: Methods of soil analysis. Part 2. Chemical and microbiological properties. Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark F.E. (Eds.), Soil Science Society of America. Madison, Wisconsin, USA. pp. 1022-1030.
  • Putti, F.F., de Queiroz Barcelos, J.P., Goes, B.C., Alves, R.F., Neto, M.M., da Silva, A.O., Filho, L.R.A.G., Zanetti, W.A.L., de Souza, A.V., 2023. Effects of water deficit on growth and productivity in tomato crops irrigated with water treated with very low-frequency electromagnetic resonance fields. Plants 12(21): 3721.
  • Rowell, D.L., 1996. Soil Science: methods and applications. Longman, UK. 350p.
  • Smith, J.L., Paul, E.A., 1990. Significance of soil microbial biomass estimation: Soil Biochemistry. Bollag, J.W., Stotzky, G. (Eds.). Volume 6, Marcel Dekker Inc. New York, USA. pp. 357-396.
  • Tahat, M.M., Alananbeh, K.M., Othman, Y.A., Leskovar, D.I., 2020. Soil Health and Sustainable Agriculture. Sustainability 12(12): 4859.
  • Toor, M.D., Ay, A., Ullah, I., Demirkaya, S., Kızılkaya, R., Mihoub, A., Zia, A., Jamal, A., Ghfar, A.A., Di Serio, A., Ronga, D., 2024. Vermicompost rate effects on soil fertility and morpho-physio-biochemical traits of lettuce. Horticulturae 10 (4): 418.
  • Trang, N.N.P., Chuong, N.V., 2025. The enhancement of soil fertility and baby maize output by Streptomyces panayensis and vermicompost. Eurasian Journal of Soil Science 14(2): 140-148.
  • Walkley, A., Black, C.A., 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37(1): 29–38.
  • Wang, X.X., Zhao, F., Zhang, G., Zhang, Y., Yang, L., 2017. Vermicompost improves tomato yield and quality and the biochemical properties of soils with different tomato planting history in a greenhouse study. Frontiers in Plant Science 8: 1978.
  • Yang, L., Zhao, F., Chang, Q., Li, T., Li, F., 2015. Effects of vermicomposts on tomato yield and quality and soil fertility in greenhouse under different soil water regimes. Agricultural Water Management 160: 98–105.
There are 37 citations in total.

Details

Primary Language English
Subjects Soil Sciences and Plant Nutrition (Other)
Journal Section Research Article
Authors

Zumrud Guliyeva This is me 0009-0006-8773-6978

Shaban Maxsudov This is me 0009-0005-1509-1325

Samira Garibova This is me 0009-0009-4805-0553

Nargiz Ashurova This is me 0000-0002-7359-9849

Azade Aliyeva This is me 0000-0001-5725-7518

Sevinj Novruzova This is me 0009-0004-7368-8608

Sahil Guliyev 0009-0001-8562-6613

Publication Date July 1, 2025
Submission Date December 20, 2024
Acceptance Date May 14, 2025
Published in Issue Year 2025 Volume: 14 Issue: 3

Cite

APA Guliyeva, Z., Maxsudov, S., Garibova, S., … Ashurova, N. (2025). Effects of vermicompost application rates and irrigation regimes on tomato yield, nutrient uptake and soil properties under greenhouse conditions. Eurasian Journal of Soil Science, 14(3), 270-279. https://doi.org/10.18393/ejss.1703816