Araştırma Makalesi
BibTex RIS Kaynak Göster

Breeding for Adaptation Traits of Wheat in Eastern European Environments the Hungarian Example

Yıl 2017, Cilt: 3 Sayı: 1, 1 - 11, 31.01.2017

Öz

The traditional wheat germplasm that have evolved in Eastern Europe exhibit a unique adaptation type due to the
ecological conditions. Bread wheat type developed in this region is a valuable source for wheat breeders worldwide.
Wheat improvement in the 20th century was carried out using traditional breeding methods and the consideration of
environmental effects played a significant role in the germplasm development. Efficient wheat breeding programme for
continental climatic environments will require new breeding efforts, including new strategies in gene bank research, to
develop new germplasm in pre-breeding programmes and the application of modern breeding technologies. The complex
tasks facing wheat breeders in Eastern Europe include the improvement of stress resistance, especially winter hardiness
and tolerance of drought and heat at higher levels of yield potential. New challenge is to close the yield gap in the
changing climate. The good bread making quality of Eastern European wheat will only represent an advantage if it is
associated with better quality stability.

Kaynakça

  • Balfourier, F., Roussel, V., Strelchenko, P., Exbrayat-Winson, F., Sourdille, P., Boutet, G., Koenig, J., Ravel, C., Mitrofanova, O., Beckert, M., and Charmet, G., 2007. A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet, 114, 1265- 1275. Bedő, Z., Balla, L., Szunics, L., Láng, L., and Kramarikné Kissimon, J., 1993. Agronomical properties of the Martonvasar wheat varieties with 1B/1R translocations. Növénytermelés, 42, 391-398. Bedő, Z., Karsai, I., Balla, L., and Barnabás, B., 1988. Some possibilities of efficient haploid production in wheat. In: Miller TE, Koebner RMD: Proceeding of the 7th International Wheat Genetic Symposium. Cambridge, UK, 1043-1046. Bedő, Z., Láng L., Veisz, O., and Vida, Gy., 2005. Breeding of winter wheat (Triticum aestivum L.) for different adaptation types in multifunctional agricultural production. Turk. J. Agric. For., 29, 151-156. Bedő Z., 2008. A Pannon minőségű búza nemesítése és termesztése. Agroinform kiadó, Budapest. p. 107. Bespalova, L., 1996. Wheat breeding in Krasnodar Research Institute of Agriculture, Scientific Works. Anniversary Issue, devoted to 95th year form the birth of the academician P.P. Lukyaneneko, Krasnodar, pp. 396. Borojevic, S., 1990. Genetic improvement in wheat yield potential. Savremena Poljop. Novi Sad, 38, 1-2., 25-47. Breseghello, F., and Sorrells, M., 2006. Association analysis as a strategy for improvement of quantitative traits in plants. Crop Science, 46, 1323-1330. Butow, B.J., Gale, K.R., Ikea, J., Juhász, A., Bedő, Z., Tamás, L., and Gianibelli, M.C., 2004. Dissemination of the highly expressed Bx7 glutenin subunit (Glu–B1 allele) in wheat as revealed by novel PCR markers and RP-HPLC. Theor. Appl. Genet., 109, 1525-1535. Cloutier, S., and Lukow, O.M., 1998. Cloning and expression of a rare LMW glutenin. Proc. of the 9th International Wheat Genetic Symp. Saskatoon, 3:2-4. DePauw, R.M., Clarke, J.M., McCaig, T.N., and Townley-Smith, T.F., 1998. Opportunities for the improvement of Western Canadian wheat protein concentration, grain yield and quality through plant breeding. in: Fowler, D.B., Geddes, W.E., Johnston, A.M., Preston, K.R., Wheat protein production and marketing. Proc. Wheat Protein Symp., Saskatoon, Saskatchewan, Canada, 75-93. Dorofeev, V.F., and Udachin, R.A., 1987. Wheats of the world. Agropromizdat, Leningrad, pp. 560. Dunwell, J. M., 2008. Transgenic wheat, barley and oats: future prospects. In: Jones, H.D., Shewry, P. R., Transgenic wheat, barley and Oats, production and characterization protocols, Springer Protocols, Methods in Molecular Biology, Humana Press, Totowa, NJ, 333-346. Dyck, P.L., 1994. Genetics of resistance to leaf rust and stem rust on wheat. Annual Wheat Newsletter, 40, 63-64. Fischer, R.A., and Edmeades, G.O., 2010. Breeding and cereal yield progress. Crop Science, 50, 85-98. Frisch, M., Bohn, M., and Melchinger, A.E., 2000. PLABSIM: Software for simulation of marker-assisted backcrossing. J. Hered., 91, 86-87. Jakubziner, M.M., 1962. Wheat species and varieties as resources in plant breeding. Proc. Of the Symposium on genetics and wheat breeding, Martonvásár, 405-422. Javornik, B., Sinkovic, T., Vapa L., Koebner R. M. D., and Rogers, W. J., 1991. A comparison of methods for identifying and surveying the presence of 1BL. 1RS translocations in bread wheat. Euphytica, 54, 45-53. Juhász, A., Larroque, O.R., Tamás, L., Hsam, S.L.K., Zeller, F.J., Békés, F., Bedő, Z., 2003. Bánkúti 1201 - an old Hungarian wheat variety with special storage protein composition. Theor Appl Genet, 107: 697-704. Lelley, J., 1967. Variety policy and the Hungarian wheat varieties. Mezőgazdasági Kiadó, Budapest, pp. 127. Litvinenko, M.A., 1998. Breeding intensive winter bread wheat varieties in Ukraine. Euphytica, 100: 7-14. Litvinenko, M., Lyfenko, S., Poperelya, F., Babajants, L., and Palamatchuk, A., 2001. Ukrainien Wheat Pool. In: Bonjean, A.P., Angus, W.J., (Eds.), The world wheat book; a history of wheat breeding. Lavoisier Publishing, Paris, 351- 375. © Plant Breeders Union of Turkey (BİSAB) 11 Lukyanenko, P.P., 1966. Metodi i rezultati szelekcii ozimoj psenici. in: Trudi Krasznodarszkogo NISzH. Krasznodarszkoje knizsnoje izdatelsztvo, Krasznodar, 2, 26-49. Lyfenko, S.F., 1987. Semi-dwarf wheat varieties. Urozshay, Kiev, pp. 285. Marchylo, B.A., Lukow, O.M., and Kruger, J.E., 1992. Quantitative variation in high molecular weight glutenin subunit 7 in some Canadian wheat. Journal of Cereal Science, 15, 29-37. Molnár-Láng, M., Linc, G., Sutka, J., 1996. Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica 90:301–305. Nava, I.C., Rouse, M.M., Chao, S., Jin, Y. and Anderson, J.A., 2012. Genetics and mapping of stem rust resistance in winter wheat cv. MV Zelma. In: Proc. Borlaug Global Rust Initiative, Technical Workshop, ed.: McIntosh R., Beijing, China. pp. 141. Rabinovich, S.V., 1998. Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. . Euphytica, 100:323-340. Rakszegi, M., Pastori, G., Jones, H.D., Békés, F., Butow, B., Láng, L., Bedő, Z., and Shewry, P.R., 2008. Technological quality of field grown transgenic lines of commercial wheat cultivars expressing the 1Ax1 HMW glutenin subunit gene. Journal of Cereal Science, 47, 310- 321. Saulescu, N.N., Ittu, G., and Giura, A., 1988. Identification of height reducing genes in several semi-dwarf winter wheat cultivars. Probl. Genet. Theor. Appl., 20, (4), 227-237. Saulescu, N.N., Ittu, G., Balota, M., Ittu, M., and Mustatea, P., 1998. Breeding wheat for lodging resistance, earliness and tolerance to abiotic stresses. In: Braun, H.J., et al., (Eds.), Wheat: prospects for global improvement. Kluwer Academic Publishers, Netherlands, 181-188. Singh, R. P., Kinyua, M. G., Wanyera, R., Njau, P., Jin, Y., and Huerta-Espino, J., 2007. Spread of a highly virulent race of Puccinia graminis tritici in Eastern Africa. in Buck, H. T., Nisi, J. E., Salomón, N., Wheat production in stressed environments, Proc. of the 7th Int. Wheat Conf. 2005, Mar del Plata, Argentina, Springer, Dordrecht, 51-57. Strebeyko, P., 1976. Biologia pszenicy. Warsaw,PWN, 14-16. Szunics, L., Láng, L., Balla, L., and Bedő, Z., 1985. Búzafajtáink szem-szalma aránya. in:Bajai-Koltay (eds.): Búzatermesztési kísérletek 1970-1980. Akadémiai Kiadó, Budapest, 112-118. Vassiltchouk, N.S., 1999. Methods of breeding the spring durum wheat (T. Durum Desf.) for productivity and grain quality in Low Volga Region. Thesis for Doctor’s Degree, Res. Inst. of Agriculture of South-East Saratov, pp. 78. Vavilov, N.I., 1935. Scientific basis of wheat breeding. in: Theoretical basis of plant breeding, Vol 2. Applied breeding of cereal and forage crops, Selskhozgiz, Moscow, Leningrad, pp. 224. Veisz, O., Braun, H.J., and Bedő, Z., 2001. Plant damage after freezing, and the frost resistance of varieties from the facultative and winter wheat observation nurseries. Euphytica, 119, 179-183. Veisz, O., Harnos, N., Szunics, L., and Tischner, T., 1996. Overwintering of winter cereals in Hungary in the case of global warming. Euphytica, 92, 249-253. Vida, Gy., Gál, M., Uhrin, A., Veisz, O., Syed, N.H., Flavell, A.J., Wang, Z., and Bedő, Z., 2009. Molecular markers for the identification of resistance genes and marker-assisted selection in breeding wheat for leaf rust resistance. Euphytica, 170, 67-76. Zhukovsky, P.M., 1957. Wheat in the USSR. State Publishing House of Agricultural Literature, Moscow, Leningrad, pp. 632.
Yıl 2017, Cilt: 3 Sayı: 1, 1 - 11, 31.01.2017

Öz

Kaynakça

  • Balfourier, F., Roussel, V., Strelchenko, P., Exbrayat-Winson, F., Sourdille, P., Boutet, G., Koenig, J., Ravel, C., Mitrofanova, O., Beckert, M., and Charmet, G., 2007. A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet, 114, 1265- 1275. Bedő, Z., Balla, L., Szunics, L., Láng, L., and Kramarikné Kissimon, J., 1993. Agronomical properties of the Martonvasar wheat varieties with 1B/1R translocations. Növénytermelés, 42, 391-398. Bedő, Z., Karsai, I., Balla, L., and Barnabás, B., 1988. Some possibilities of efficient haploid production in wheat. In: Miller TE, Koebner RMD: Proceeding of the 7th International Wheat Genetic Symposium. Cambridge, UK, 1043-1046. Bedő, Z., Láng L., Veisz, O., and Vida, Gy., 2005. Breeding of winter wheat (Triticum aestivum L.) for different adaptation types in multifunctional agricultural production. Turk. J. Agric. For., 29, 151-156. Bedő Z., 2008. A Pannon minőségű búza nemesítése és termesztése. Agroinform kiadó, Budapest. p. 107. Bespalova, L., 1996. Wheat breeding in Krasnodar Research Institute of Agriculture, Scientific Works. Anniversary Issue, devoted to 95th year form the birth of the academician P.P. Lukyaneneko, Krasnodar, pp. 396. Borojevic, S., 1990. Genetic improvement in wheat yield potential. Savremena Poljop. Novi Sad, 38, 1-2., 25-47. Breseghello, F., and Sorrells, M., 2006. Association analysis as a strategy for improvement of quantitative traits in plants. Crop Science, 46, 1323-1330. Butow, B.J., Gale, K.R., Ikea, J., Juhász, A., Bedő, Z., Tamás, L., and Gianibelli, M.C., 2004. Dissemination of the highly expressed Bx7 glutenin subunit (Glu–B1 allele) in wheat as revealed by novel PCR markers and RP-HPLC. Theor. Appl. Genet., 109, 1525-1535. Cloutier, S., and Lukow, O.M., 1998. Cloning and expression of a rare LMW glutenin. Proc. of the 9th International Wheat Genetic Symp. Saskatoon, 3:2-4. DePauw, R.M., Clarke, J.M., McCaig, T.N., and Townley-Smith, T.F., 1998. Opportunities for the improvement of Western Canadian wheat protein concentration, grain yield and quality through plant breeding. in: Fowler, D.B., Geddes, W.E., Johnston, A.M., Preston, K.R., Wheat protein production and marketing. Proc. Wheat Protein Symp., Saskatoon, Saskatchewan, Canada, 75-93. Dorofeev, V.F., and Udachin, R.A., 1987. Wheats of the world. Agropromizdat, Leningrad, pp. 560. Dunwell, J. M., 2008. Transgenic wheat, barley and oats: future prospects. In: Jones, H.D., Shewry, P. R., Transgenic wheat, barley and Oats, production and characterization protocols, Springer Protocols, Methods in Molecular Biology, Humana Press, Totowa, NJ, 333-346. Dyck, P.L., 1994. Genetics of resistance to leaf rust and stem rust on wheat. Annual Wheat Newsletter, 40, 63-64. Fischer, R.A., and Edmeades, G.O., 2010. Breeding and cereal yield progress. Crop Science, 50, 85-98. Frisch, M., Bohn, M., and Melchinger, A.E., 2000. PLABSIM: Software for simulation of marker-assisted backcrossing. J. Hered., 91, 86-87. Jakubziner, M.M., 1962. Wheat species and varieties as resources in plant breeding. Proc. Of the Symposium on genetics and wheat breeding, Martonvásár, 405-422. Javornik, B., Sinkovic, T., Vapa L., Koebner R. M. D., and Rogers, W. J., 1991. A comparison of methods for identifying and surveying the presence of 1BL. 1RS translocations in bread wheat. Euphytica, 54, 45-53. Juhász, A., Larroque, O.R., Tamás, L., Hsam, S.L.K., Zeller, F.J., Békés, F., Bedő, Z., 2003. Bánkúti 1201 - an old Hungarian wheat variety with special storage protein composition. Theor Appl Genet, 107: 697-704. Lelley, J., 1967. Variety policy and the Hungarian wheat varieties. Mezőgazdasági Kiadó, Budapest, pp. 127. Litvinenko, M.A., 1998. Breeding intensive winter bread wheat varieties in Ukraine. Euphytica, 100: 7-14. Litvinenko, M., Lyfenko, S., Poperelya, F., Babajants, L., and Palamatchuk, A., 2001. Ukrainien Wheat Pool. In: Bonjean, A.P., Angus, W.J., (Eds.), The world wheat book; a history of wheat breeding. Lavoisier Publishing, Paris, 351- 375. © Plant Breeders Union of Turkey (BİSAB) 11 Lukyanenko, P.P., 1966. Metodi i rezultati szelekcii ozimoj psenici. in: Trudi Krasznodarszkogo NISzH. Krasznodarszkoje knizsnoje izdatelsztvo, Krasznodar, 2, 26-49. Lyfenko, S.F., 1987. Semi-dwarf wheat varieties. Urozshay, Kiev, pp. 285. Marchylo, B.A., Lukow, O.M., and Kruger, J.E., 1992. Quantitative variation in high molecular weight glutenin subunit 7 in some Canadian wheat. Journal of Cereal Science, 15, 29-37. Molnár-Láng, M., Linc, G., Sutka, J., 1996. Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica 90:301–305. Nava, I.C., Rouse, M.M., Chao, S., Jin, Y. and Anderson, J.A., 2012. Genetics and mapping of stem rust resistance in winter wheat cv. MV Zelma. In: Proc. Borlaug Global Rust Initiative, Technical Workshop, ed.: McIntosh R., Beijing, China. pp. 141. Rabinovich, S.V., 1998. Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. . Euphytica, 100:323-340. Rakszegi, M., Pastori, G., Jones, H.D., Békés, F., Butow, B., Láng, L., Bedő, Z., and Shewry, P.R., 2008. Technological quality of field grown transgenic lines of commercial wheat cultivars expressing the 1Ax1 HMW glutenin subunit gene. Journal of Cereal Science, 47, 310- 321. Saulescu, N.N., Ittu, G., and Giura, A., 1988. Identification of height reducing genes in several semi-dwarf winter wheat cultivars. Probl. Genet. Theor. Appl., 20, (4), 227-237. Saulescu, N.N., Ittu, G., Balota, M., Ittu, M., and Mustatea, P., 1998. Breeding wheat for lodging resistance, earliness and tolerance to abiotic stresses. In: Braun, H.J., et al., (Eds.), Wheat: prospects for global improvement. Kluwer Academic Publishers, Netherlands, 181-188. Singh, R. P., Kinyua, M. G., Wanyera, R., Njau, P., Jin, Y., and Huerta-Espino, J., 2007. Spread of a highly virulent race of Puccinia graminis tritici in Eastern Africa. in Buck, H. T., Nisi, J. E., Salomón, N., Wheat production in stressed environments, Proc. of the 7th Int. Wheat Conf. 2005, Mar del Plata, Argentina, Springer, Dordrecht, 51-57. Strebeyko, P., 1976. Biologia pszenicy. Warsaw,PWN, 14-16. Szunics, L., Láng, L., Balla, L., and Bedő, Z., 1985. Búzafajtáink szem-szalma aránya. in:Bajai-Koltay (eds.): Búzatermesztési kísérletek 1970-1980. Akadémiai Kiadó, Budapest, 112-118. Vassiltchouk, N.S., 1999. Methods of breeding the spring durum wheat (T. Durum Desf.) for productivity and grain quality in Low Volga Region. Thesis for Doctor’s Degree, Res. Inst. of Agriculture of South-East Saratov, pp. 78. Vavilov, N.I., 1935. Scientific basis of wheat breeding. in: Theoretical basis of plant breeding, Vol 2. Applied breeding of cereal and forage crops, Selskhozgiz, Moscow, Leningrad, pp. 224. Veisz, O., Braun, H.J., and Bedő, Z., 2001. Plant damage after freezing, and the frost resistance of varieties from the facultative and winter wheat observation nurseries. Euphytica, 119, 179-183. Veisz, O., Harnos, N., Szunics, L., and Tischner, T., 1996. Overwintering of winter cereals in Hungary in the case of global warming. Euphytica, 92, 249-253. Vida, Gy., Gál, M., Uhrin, A., Veisz, O., Syed, N.H., Flavell, A.J., Wang, Z., and Bedő, Z., 2009. Molecular markers for the identification of resistance genes and marker-assisted selection in breeding wheat for leaf rust resistance. Euphytica, 170, 67-76. Zhukovsky, P.M., 1957. Wheat in the USSR. State Publishing House of Agricultural Literature, Moscow, Leningrad, pp. 632.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Zoltán Bedő Bu kişi benim

Yayımlanma Tarihi 31 Ocak 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 3 Sayı: 1

Kaynak Göster

APA Bedő, Z. (2017). Breeding for Adaptation Traits of Wheat in Eastern European Environments the Hungarian Example. Ekin Journal of Crop Breeding and Genetics, 3(1), 1-11.
AMA Bedő Z. Breeding for Adaptation Traits of Wheat in Eastern European Environments the Hungarian Example. Ekin Journal. Ocak 2017;3(1):1-11.
Chicago Bedő, Zoltán. “Breeding for Adaptation Traits of Wheat in Eastern European Environments the Hungarian Example”. Ekin Journal of Crop Breeding and Genetics 3, sy. 1 (Ocak 2017): 1-11.
EndNote Bedő Z (01 Ocak 2017) Breeding for Adaptation Traits of Wheat in Eastern European Environments the Hungarian Example. Ekin Journal of Crop Breeding and Genetics 3 1 1–11.
IEEE Z. Bedő, “Breeding for Adaptation Traits of Wheat in Eastern European Environments the Hungarian Example”, Ekin Journal, c. 3, sy. 1, ss. 1–11, 2017.
ISNAD Bedő, Zoltán. “Breeding for Adaptation Traits of Wheat in Eastern European Environments the Hungarian Example”. Ekin Journal of Crop Breeding and Genetics 3/1 (Ocak 2017), 1-11.
JAMA Bedő Z. Breeding for Adaptation Traits of Wheat in Eastern European Environments the Hungarian Example. Ekin Journal. 2017;3:1–11.
MLA Bedő, Zoltán. “Breeding for Adaptation Traits of Wheat in Eastern European Environments the Hungarian Example”. Ekin Journal of Crop Breeding and Genetics, c. 3, sy. 1, 2017, ss. 1-11.
Vancouver Bedő Z. Breeding for Adaptation Traits of Wheat in Eastern European Environments the Hungarian Example. Ekin Journal. 2017;3(1):1-11.