Research Article
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 2, 105 - 110, 31.07.2024

Abstract

References

  • Acciarri N, Rotino G, Tamietti G, Valentino D, Voltattorni S and Sabatini E, (2007). Molecular markers for Ve1 and Ve2 Verticillium resistance genes from Italian tomato germplasm, Plant Breeding, 126(6):617-621.
  • Agrios G, (2005). Plant pathology 5th edition: Elsevier academic press, Burlington, Ma. USA, 79-103. Ashwini B and Nagaraju N, (2022). Identification of Tm Genes for Tomato mosaic virus (ToMV) resistance in tomato germplasm, The Mysore of Agricultural Sciences, 56, 19-24.
  • Bai Y and Lindhout P, (2007). Domestication and breeding of tomatoes: what have we gained and what can we gain in the future?, Annals of botany, 100(5), 1085-1094.
  • Bhavana P, Singh A, Kumar R, Prajapati G, Thamilarasi K, Manickam R, Maurya S and Choudhary J, (2019). Identification of resistance in tomato against root knot nematode (Meloidogyne incognita) and comparison of molecular markers for Mi gene, Australasian Plant Pathology, 48, 93-100.
  • Chagué V, Mercier J, Guénard M, De Courcel A and Vedel F, (1996). Identification and mapping on chromosome 9 of RAPD markers linked to Sw-5 in tomato by bulked segregant analysis, Theoretical and Applied Genetics, 92, 1045-1051.
  • Chaisuekul C, Riley D and Pappu H, (2003). Transmission of Tomato spotted wilt virus to tomato plants of different ages, Journal of Entomological Science, 38 (1), 127-136.
  • Dianese EC, de Fonseca MEN, Goldbach R, Kormelink R, Inoue-Nagata AK, Resende RO and Boiteux LS, (2010). Development of a locus-specific, co-dominant SCAR marker for assisted-selection of the Sw-5 (Tospovirus resistance) gene cluster in a wide range of tomato accessions, Molecular Breeding, 25, 133-142.
  • Folkertsma RT, Spassova MI, Prins M, Stevens MR, Hille J and Goldbach RW, (1999). Construction of a bacterial artificial chromosome (BAC) library of Lycopersicon esculentum cv. Stevens and its application to physically map the Sw-5 locus, Molecular Breeding, 5, 197-207.
  • Garcia BE, Mejía L, Salus MS, Martin CT, Seah S, Williamson VM and Maxwell DP, (2007). A codominant SCAR marker, Mi23, for detection of the Mi-1.2 gene for resistance to root-knot nematode in tomato germplasm, PCR-Based Markers Protocols. Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, 1-13. Kaminska M, (1993). The response of Gerbera cultivars at different ages to Tomato spotted wilt virus infection, Phytopathologia Polonica, 6. Kawchuk L, Lynch D, Hachey J, Bains P and Kulcsar F, (1994). Identification of a codominant amplified polymorphic DNA marker linked to the Verticillium wilt resistance gene in tomato, Theoretical and Applied Genetics, 89, 661-664.
  • Kawchuk L, Hachey J and Lynch D, (1998). Development of sequence characterized DNA markers linked to a dominant Verticillium wilt resistance gene in tomato, Genome, 41(1):91-95.
  • Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, Van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R and Howard RJ, (2001). Tomato Ve disease resistance genes encode cell surface-like receptors, Proceedings of the National Academy of Sciences, 98(11):6511-6515.
  • Kiymaci G, Ari BC, Uncu AT, Uncu AO, Issi N and Turkmen O, (2023). Determination of resistance levels of selected tomato genotypes to Meloidogyne incognita, Tomato yellow leaf curling virus (TYLCV) Verticillium wilt, Fusarium oxysporum radicis, Fusarium wilt, Tomato spotted wilt virus (TSWV), Selcuk Journal of Agriculture and Food Sciences, 37(1):86-94.
  • Labate JA, Grandillo S, Fulton T, Muños S, Caicedo AL, Peralta I, Ji Y, Chetelat RT, Scott J and Gonzalo MJ, (2007). Tomato, Vegetables, 1-125.
  • Lee JM, Oh CS and Yeam I, (2015). Molecular markers for selecting diverse disease resistances in tomato breeding programs.
  • Liu YG, Mitsukawa N, Oosumi T and Whittier RF, (1995). Efficient isolation and mapping of Arabidopsis thaliana T‐DNA insert junctions by thermal asymmetric interlaced PCR, The Plant Journal, 8(3):457-463.
  • Maurya D, Mukherjee A, Bhagyashree Sangam S, Kumar R, Akhtar S and Chattopadhyay T, (2023). Marker assisted stacking of Ty3, Mi1. 2 and Ph3 resistance alleles for leaf curl, root knot and late blight diseases in tomato, Physiology and Molecular Biology of Plants, 29 (1), 121-129.
  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P and Williamson VM, (1998). The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes, The Plant Cell, 10 (8), 1307-1319.
  • Mitidieri M, Biderbost E, Castellano P and Taleisnik predisposition to TSWV, V International Symposium on Protected Cultivation in Mild Winter Climates: Current Trends for Suistainable Technologies 559, 781-786.
  • Moriones E, Aramburu J, Riudavets J, Arno J and Lavina A, (1998). Effect of plant age at time of infection by Tomato spotted wilt tospovirus on the yield of field-grown tomato, European Journal of Plant Pathology, 104, 295-300.
  • Park YH, Lee YJ, Kang JS, Choi YW and Son BG, (2008). Development of gene-based DNA marker for Verticillium wilt resistance in tomato, Journal of Horticultural Science and Technology, 26 (3):313-319.
  • Pegg G and Brady B, (2002). Verticillium wilts CABI Publishing, CAB International Wallingford, UK.
  • Pérez-Almeida I, Morales-Astudillo R, Medina- Litardo R, Salcedo-Rosales G, Dascon AF and Solano-Castillo T, (2016). Evaluación molecular de genotipos de tomate por su resistencia a Meloidogyne incognita, Fusarium oxysporum Ralstonia solanacearum con fines de mejoramiento, Bioagro, 28 (2):107-116.
  • Pinar H, Ata A, Keles D, Mutlu N, Denli N and Unlu M, (2013). Determination of resistance to Fusarium oxysporum f. sp. lycopersici in tomato lines by molecular markers. Derim, 30(1), 15-23. R oselló S, Díez MJ and Nuez F, (1996). Viral diseases causing the greatest economic losses to the tomato crop. I. The Tomato spotted wilt virus-a review, Scientia Horticulturae, 67 (3-4), 117-150.
  • Siddiqi MR, (2000). Tylenchida: Parasites of plants and insects, CABI, p.
  • Simko I, Costanzo S, Haynes K, Christ B and Jones R, (2004). Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach, Theoretical and Applied Genetics, 108, 217-224.
  • Śmiech M, Rusinowski Z, Malepszy S and Niemirowicz-Szczytt K, (2000). New RAPD markers of Tomato spotted wilt virus (TSWV) resistance in Lycopersicon esculentum Mill, Acta Physiologiae Plantarum, 22, 299-303.
  • Sobir Ohmori T, Murata M and Motoyoshi F, (2000). Molecular characterization of the SCAR markers tightly linked to the Tm-2 locus of the genus Lycopersicon, Theoretical and Applied Genetics, 101, 64-69.
  • Stevens M, Scott S and Gergerich R, (1991). Inheritance of a gene for resistance to Tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum Mill, Euphytica, 59, 9-17.
  • Stevens M, Lamb E and Rhoads D, (1995). Mapping the Sw-5 locus for Tomato spotted wilt virus resistance in tomatoes using RAPD and RFLP analyses, Theoretical and Applied Genetics, 90, 451-456.
  • Ullah N, Ali A, Ahmad M, Fahim M, Din N and Ahmad F, (2017). Evaluation of tomato genotypes against Tomato mosaic virus (ToMV) and its effect on yield contributing parameters, Pak. J. Bot, 49(4):1585-1592.
  • Weber H, Ohnesorge S, Silber M and Pfitzner A, (2004). The Tomato mosaic virus 30 kDa movement protein interacts differentially with the resistance genes Tm-2 and Tm-22, Archives of Virology, 149, 1499-1514.E, (2000). High temperature effect on tomato

Determination of Resistance Status of Qualified Tomato Genotypes to Meloidogyne incognita, Tomato spotted wilt virus, Tomato mosaic virus, Verticillium Wilt

Year 2024, Volume: 10 Issue: 2, 105 - 110, 31.07.2024

Abstract

Tomato (Solanum lycopersicum L.) is one of the most cultivated vegetables both in Türkiye and in the world. Türkiye
is the 4th tomato producing country after China, India and the USA. According to consumer demands, tomato varieties
such as pink, beef, bunch, cocktail are grown. The main goals in breeding are high yield, quality and resistance to
stress factors, and molecular marker-assisted selection is a fast and reliable method, especially in determining the
presence or absence of resistance genes to biotic stress factors. In this study, the resistance genes determined for 339
advanced tomato lines, which have the potential to become parent lines due to their agro morphological characteristics
and disease resistance against Meloidogyne incognita (Root-knot nematode), Tomato spotted wilt virus (TSWV),
Tomato mosaic virus (ToMV) and Verticillium wilt in the plant material. 235 were homozygous resistant to root-knot
nematode, 172 homozygous resistant to Verticillium wilt, 201 homozygous resistant to TSWV and 211 homozygous
resistant to ToMV were determined. It has been seen that breeding programs can b e created with the results obtained.

References

  • Acciarri N, Rotino G, Tamietti G, Valentino D, Voltattorni S and Sabatini E, (2007). Molecular markers for Ve1 and Ve2 Verticillium resistance genes from Italian tomato germplasm, Plant Breeding, 126(6):617-621.
  • Agrios G, (2005). Plant pathology 5th edition: Elsevier academic press, Burlington, Ma. USA, 79-103. Ashwini B and Nagaraju N, (2022). Identification of Tm Genes for Tomato mosaic virus (ToMV) resistance in tomato germplasm, The Mysore of Agricultural Sciences, 56, 19-24.
  • Bai Y and Lindhout P, (2007). Domestication and breeding of tomatoes: what have we gained and what can we gain in the future?, Annals of botany, 100(5), 1085-1094.
  • Bhavana P, Singh A, Kumar R, Prajapati G, Thamilarasi K, Manickam R, Maurya S and Choudhary J, (2019). Identification of resistance in tomato against root knot nematode (Meloidogyne incognita) and comparison of molecular markers for Mi gene, Australasian Plant Pathology, 48, 93-100.
  • Chagué V, Mercier J, Guénard M, De Courcel A and Vedel F, (1996). Identification and mapping on chromosome 9 of RAPD markers linked to Sw-5 in tomato by bulked segregant analysis, Theoretical and Applied Genetics, 92, 1045-1051.
  • Chaisuekul C, Riley D and Pappu H, (2003). Transmission of Tomato spotted wilt virus to tomato plants of different ages, Journal of Entomological Science, 38 (1), 127-136.
  • Dianese EC, de Fonseca MEN, Goldbach R, Kormelink R, Inoue-Nagata AK, Resende RO and Boiteux LS, (2010). Development of a locus-specific, co-dominant SCAR marker for assisted-selection of the Sw-5 (Tospovirus resistance) gene cluster in a wide range of tomato accessions, Molecular Breeding, 25, 133-142.
  • Folkertsma RT, Spassova MI, Prins M, Stevens MR, Hille J and Goldbach RW, (1999). Construction of a bacterial artificial chromosome (BAC) library of Lycopersicon esculentum cv. Stevens and its application to physically map the Sw-5 locus, Molecular Breeding, 5, 197-207.
  • Garcia BE, Mejía L, Salus MS, Martin CT, Seah S, Williamson VM and Maxwell DP, (2007). A codominant SCAR marker, Mi23, for detection of the Mi-1.2 gene for resistance to root-knot nematode in tomato germplasm, PCR-Based Markers Protocols. Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, 1-13. Kaminska M, (1993). The response of Gerbera cultivars at different ages to Tomato spotted wilt virus infection, Phytopathologia Polonica, 6. Kawchuk L, Lynch D, Hachey J, Bains P and Kulcsar F, (1994). Identification of a codominant amplified polymorphic DNA marker linked to the Verticillium wilt resistance gene in tomato, Theoretical and Applied Genetics, 89, 661-664.
  • Kawchuk L, Hachey J and Lynch D, (1998). Development of sequence characterized DNA markers linked to a dominant Verticillium wilt resistance gene in tomato, Genome, 41(1):91-95.
  • Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, Van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R and Howard RJ, (2001). Tomato Ve disease resistance genes encode cell surface-like receptors, Proceedings of the National Academy of Sciences, 98(11):6511-6515.
  • Kiymaci G, Ari BC, Uncu AT, Uncu AO, Issi N and Turkmen O, (2023). Determination of resistance levels of selected tomato genotypes to Meloidogyne incognita, Tomato yellow leaf curling virus (TYLCV) Verticillium wilt, Fusarium oxysporum radicis, Fusarium wilt, Tomato spotted wilt virus (TSWV), Selcuk Journal of Agriculture and Food Sciences, 37(1):86-94.
  • Labate JA, Grandillo S, Fulton T, Muños S, Caicedo AL, Peralta I, Ji Y, Chetelat RT, Scott J and Gonzalo MJ, (2007). Tomato, Vegetables, 1-125.
  • Lee JM, Oh CS and Yeam I, (2015). Molecular markers for selecting diverse disease resistances in tomato breeding programs.
  • Liu YG, Mitsukawa N, Oosumi T and Whittier RF, (1995). Efficient isolation and mapping of Arabidopsis thaliana T‐DNA insert junctions by thermal asymmetric interlaced PCR, The Plant Journal, 8(3):457-463.
  • Maurya D, Mukherjee A, Bhagyashree Sangam S, Kumar R, Akhtar S and Chattopadhyay T, (2023). Marker assisted stacking of Ty3, Mi1. 2 and Ph3 resistance alleles for leaf curl, root knot and late blight diseases in tomato, Physiology and Molecular Biology of Plants, 29 (1), 121-129.
  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P and Williamson VM, (1998). The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes, The Plant Cell, 10 (8), 1307-1319.
  • Mitidieri M, Biderbost E, Castellano P and Taleisnik predisposition to TSWV, V International Symposium on Protected Cultivation in Mild Winter Climates: Current Trends for Suistainable Technologies 559, 781-786.
  • Moriones E, Aramburu J, Riudavets J, Arno J and Lavina A, (1998). Effect of plant age at time of infection by Tomato spotted wilt tospovirus on the yield of field-grown tomato, European Journal of Plant Pathology, 104, 295-300.
  • Park YH, Lee YJ, Kang JS, Choi YW and Son BG, (2008). Development of gene-based DNA marker for Verticillium wilt resistance in tomato, Journal of Horticultural Science and Technology, 26 (3):313-319.
  • Pegg G and Brady B, (2002). Verticillium wilts CABI Publishing, CAB International Wallingford, UK.
  • Pérez-Almeida I, Morales-Astudillo R, Medina- Litardo R, Salcedo-Rosales G, Dascon AF and Solano-Castillo T, (2016). Evaluación molecular de genotipos de tomate por su resistencia a Meloidogyne incognita, Fusarium oxysporum Ralstonia solanacearum con fines de mejoramiento, Bioagro, 28 (2):107-116.
  • Pinar H, Ata A, Keles D, Mutlu N, Denli N and Unlu M, (2013). Determination of resistance to Fusarium oxysporum f. sp. lycopersici in tomato lines by molecular markers. Derim, 30(1), 15-23. R oselló S, Díez MJ and Nuez F, (1996). Viral diseases causing the greatest economic losses to the tomato crop. I. The Tomato spotted wilt virus-a review, Scientia Horticulturae, 67 (3-4), 117-150.
  • Siddiqi MR, (2000). Tylenchida: Parasites of plants and insects, CABI, p.
  • Simko I, Costanzo S, Haynes K, Christ B and Jones R, (2004). Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach, Theoretical and Applied Genetics, 108, 217-224.
  • Śmiech M, Rusinowski Z, Malepszy S and Niemirowicz-Szczytt K, (2000). New RAPD markers of Tomato spotted wilt virus (TSWV) resistance in Lycopersicon esculentum Mill, Acta Physiologiae Plantarum, 22, 299-303.
  • Sobir Ohmori T, Murata M and Motoyoshi F, (2000). Molecular characterization of the SCAR markers tightly linked to the Tm-2 locus of the genus Lycopersicon, Theoretical and Applied Genetics, 101, 64-69.
  • Stevens M, Scott S and Gergerich R, (1991). Inheritance of a gene for resistance to Tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum Mill, Euphytica, 59, 9-17.
  • Stevens M, Lamb E and Rhoads D, (1995). Mapping the Sw-5 locus for Tomato spotted wilt virus resistance in tomatoes using RAPD and RFLP analyses, Theoretical and Applied Genetics, 90, 451-456.
  • Ullah N, Ali A, Ahmad M, Fahim M, Din N and Ahmad F, (2017). Evaluation of tomato genotypes against Tomato mosaic virus (ToMV) and its effect on yield contributing parameters, Pak. J. Bot, 49(4):1585-1592.
  • Weber H, Ohnesorge S, Silber M and Pfitzner A, (2004). The Tomato mosaic virus 30 kDa movement protein interacts differentially with the resistance genes Tm-2 and Tm-22, Archives of Virology, 149, 1499-1514.E, (2000). High temperature effect on tomato
There are 31 citations in total.

Details

Primary Language English
Subjects Field Crops and Pasture Production (Other)
Journal Section Articles
Authors

Selcan Eroğlu

Ali Tevfik Uncu

Ayşe Özgür Uncu This is me

Neslihan Issi This is me

Banu Çiçek Ari This is me

Gülbanu Kiymaci Kiymaci This is me

Önder Türkmen This is me

Publication Date July 31, 2024
Submission Date June 6, 2024
Acceptance Date June 25, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

APA Eroğlu, S., Uncu, A. T., Özgür Uncu, A., Issi, N., et al. (2024). Determination of Resistance Status of Qualified Tomato Genotypes to Meloidogyne incognita, Tomato spotted wilt virus, Tomato mosaic virus, Verticillium Wilt. Ekin Journal of Crop Breeding and Genetics, 10(2), 105-110.
AMA Eroğlu S, Uncu AT, Özgür Uncu A, Issi N, Ari BÇ, Kiymaci GK, Türkmen Ö. Determination of Resistance Status of Qualified Tomato Genotypes to Meloidogyne incognita, Tomato spotted wilt virus, Tomato mosaic virus, Verticillium Wilt. Ekin Journal. July 2024;10(2):105-110.
Chicago Eroğlu, Selcan, Ali Tevfik Uncu, Ayşe Özgür Uncu, Neslihan Issi, Banu Çiçek Ari, Gülbanu Kiymaci Kiymaci, and Önder Türkmen. “Determination of Resistance Status of Qualified Tomato Genotypes to Meloidogyne Incognita, Tomato Spotted Wilt Virus, Tomato Mosaic Virus, Verticillium Wilt”. Ekin Journal of Crop Breeding and Genetics 10, no. 2 (July 2024): 105-10.
EndNote Eroğlu S, Uncu AT, Özgür Uncu A, Issi N, Ari BÇ, Kiymaci GK, Türkmen Ö (July 1, 2024) Determination of Resistance Status of Qualified Tomato Genotypes to Meloidogyne incognita, Tomato spotted wilt virus, Tomato mosaic virus, Verticillium Wilt. Ekin Journal of Crop Breeding and Genetics 10 2 105–110.
IEEE S. Eroğlu, A. T. Uncu, A. Özgür Uncu, N. Issi, B. Ç. Ari, G. K. Kiymaci, and Ö. Türkmen, “Determination of Resistance Status of Qualified Tomato Genotypes to Meloidogyne incognita, Tomato spotted wilt virus, Tomato mosaic virus, Verticillium Wilt”, Ekin Journal, vol. 10, no. 2, pp. 105–110, 2024.
ISNAD Eroğlu, Selcan et al. “Determination of Resistance Status of Qualified Tomato Genotypes to Meloidogyne Incognita, Tomato Spotted Wilt Virus, Tomato Mosaic Virus, Verticillium Wilt”. Ekin Journal of Crop Breeding and Genetics 10/2 (July 2024), 105-110.
JAMA Eroğlu S, Uncu AT, Özgür Uncu A, Issi N, Ari BÇ, Kiymaci GK, Türkmen Ö. Determination of Resistance Status of Qualified Tomato Genotypes to Meloidogyne incognita, Tomato spotted wilt virus, Tomato mosaic virus, Verticillium Wilt. Ekin Journal. 2024;10:105–110.
MLA Eroğlu, Selcan et al. “Determination of Resistance Status of Qualified Tomato Genotypes to Meloidogyne Incognita, Tomato Spotted Wilt Virus, Tomato Mosaic Virus, Verticillium Wilt”. Ekin Journal of Crop Breeding and Genetics, vol. 10, no. 2, 2024, pp. 105-10.
Vancouver Eroğlu S, Uncu AT, Özgür Uncu A, Issi N, Ari BÇ, Kiymaci GK, Türkmen Ö. Determination of Resistance Status of Qualified Tomato Genotypes to Meloidogyne incognita, Tomato spotted wilt virus, Tomato mosaic virus, Verticillium Wilt. Ekin Journal. 2024;10(2):105-10.