Bu çalismada, ikili gaz karisimlari olasiliksal sinir agi (PNN) kullanilarak siniflandirilmistir. Kuatz kristal
mikrobalans (QCM) tipi sensorlarden elde edilen kararli hal sensor cevaplarini içeren bir veri seti PNN’nin egitimi
için kullanilmistir. PNN yapisinin performansi deneysel sonuçlara dayanarak tartisilmistir
In this study, the binary gas mixtures were classified using probabilistic neural network (PNN). A data set
consisted of the steady state sensor responses from the quartz crystal microbalance (QCM) type sensors were used
for the training of the PNN. The performance of the PNN structure was discussed based on the experimental results.
Other ID | JA77TD79HR |
---|---|
Journal Section | Articles |
Authors | |
Publication Date | August 1, 2007 |
Submission Date | August 1, 2007 |
Published in Issue | Year 2007 Volume: 3 Issue: 2 |