Research Article
BibTex RIS Cite

Performances of cryo-treated and untreated cutting tools in machining of AA7075 aerospace aluminium alloy

Year 2023, , 70 - 81, 20.06.2023
https://doi.org/10.26701/ems.1270937

Abstract

The quality of drilled holes in aluminium alloys used in the aerospace industry is vital to ensure high-precision structural integrity. For this reason, optimum selection of cost-effective cutting tools and cutting parameters is of great importance. Nowadays, due to their high cost and supply difficulties, there is a great interest in improving the performance of traditional HSS cutting tools as an alternative to ceramic, carbide and coated cutting tools. HSS cutting tools are widely used in different industries due to their cost-effectiveness and suitability to improve tool performance. In this research, the performances of cryo-treated (DC&T) and untreated (UT) HSS cutting tools used in dry machining of AA7075 aluminium alloys were investigated. Thanks to DC&T processes applied to HSS cutting tool, improvements have occurred in its microstructure. The hardness value of HSS cutting tool increased by 6.89% with the effect of DC&T processes applied. When the highest and lowest Ra values obtained using DC&T and UT HSS cutting tools were compared, it was seen that DC&T HSS cutting tool performed better by 11.05% and 25.91%, respectively. It has been determined that the hole surface quality of the aluminium workpiece machined with DC&T and UT HSS drills is negatively affected by the increase in spindle speed and feed rate. The highest S/N ratios calculated according to Ra values of holes drilled on aluminium workpieces using DC&T and UT HSS cutting tools were found to be -7.12 dB (2.27 μm) and -9.62 dB (3.03 μm), respectively. In the ANOVA analysis, it was determined that the most effective parameters on Ra values were spindle speed (70.62%), tools (18.19%) and feed rate (9.98%), respectively. In the regression analysis, R2 value for Ra values was calculated as 98.30%. High R2 value result shows that the model developed is quite successful in estimating Ra values.

References

  • [1] Aamir, M., Giasin, K., Tolouei-Rad, M., Vafadar, A., (2020). A review: Drilling performance and hole quality of aluminium alloys for aerospace applications. Journal of Materials Research and Technology, 9(6): 12484-12500.
  • [2] Pinar, A.M., (2013). Optimization of process parameters with minimum surface roughness in the pocket machining of AA5083 aluminum alloy via Taguchi method. Arabian Journal for Science and Engineering, 38: 705-714.
  • [3] Campbell, F.C., (2008). Elements of metallurgy and engineering alloys. ASM international, 487-508.
  • [4] Zhao, J., Deng, Y., Tang, J., Zhang, J., (2019). Influence of strain rate on hot deformation behavior and recrystallization behavior under isothermal compression of Al-Zn-Mg-Cu alloy. Journal of Alloys and Compounds, 809: 151788.
  • [5] Sun, D. et al., (2018). Hole-making processes and their impacts on the microstructure and fatigue response of aircraft alloys. The International Journal of Advanced Manufacturing Technology, 94(5): 1719-1726.
  • [6] Zhu, Z. et al., (2018). Evaluation of novel tool geometries in dry drilling aluminium 2024-T351/titanium Ti6Al4V stack. Journal of Materials Processing Technology, 259: 270-281.
  • [7] Kalidas, S., DeVor, R.E., Kapoor, S.G., (2001). Experimental investigation of the effect of drill coatings on hole quality under dry and wet drilling conditions. Surface and Coatings Technology, 148(2-3): 117-128.
  • [8] Aamir, M., Tolouei-Rad, M., Giasin, K., Vafadar, A., (2020). Machinability of Al2024, Al6061, and Al5083 alloys using multi-hole simultaneous drilling approach. Journal of Materials Research and Technology, 9(5): 10991-11002.
  • [9] Jovičević-Klug, P., Puš, G., Jovičević-Klug, M., Žužek, B., Podgornik, B., (2022). Influence of heat treatment parameters on effectiveness of deep cryogenic treatment on properties of high-speed steels. Materials Science and Engineering: A, 829: 142157.
  • [10] Molinari, A., Pellizzari, M., Gialanella, S., Straffelini, G., Stiasny, K., (2001). Effect of deep cryogenic treatment on the mechanical properties of tool steels. Journal of materials processing technology, 118(1-3): 350-355.
  • [11] Da Silva, F.J., Franco, S.D., Machado, A.R., Ezugwu, E.O., Souza Jr, A.M., (2006). Performance of cryogenically treated HSS tools. Wear, 261(5-6): 674-685.
  • [12] Adin, M.Ş., (2022). Kriyojenik ısıl işlem uygulanmış özel tasarlanmış matkap uçları ile fiber takviyeli cam-epoksi kompozitin delme performansı ve mekanik özelliklerinin incelenmesi. Doktora Tezi, Batman Üniversitesi Lisansüstü Eğitim Enstitüsü, 1-266.
  • [13] Jovičević-Klug, P., Jovičević-Klug, M., Podgornik, B., (2020). Effectiveness of deep cryogenic treatment on carbide precipitation. Journal of Materials Research and Technology, 9(6): 13014-13026.
  • [14] Jovičević-Klug, P., Tóth, L., Podgornik, B., (2022). Comparison of K340 Steel Microstructure and Mechanical Properties Using Shallow and Deep Cryogenic Treatment. Coatings, 12(9): 1296.
  • [15] Akhbarizadeh, A., Shafyei, A., Golozar, M., (2009). Effects of cryogenic treatment on wear behavior of D6 tool steel. Materials & Design, 30(8): 3259-3264.
  • [16] Gürbüz, H., Baday, Ş., (2021). Milling Inconel 718 workpiece with cryogenically treated and untreated cutting tools. The International Journal of Advanced Manufacturing Technology, 116: 3135-3148.
  • [17] Baday, Ş., Ersöz, O., (2022). Comparative investigations of cryo-treated and untreated inserts on machinability of AISI 1050 by using response surface methodology, ANOVA and Taguchi design. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(3): 1751-1765.
  • [18] Güney, F., Menderes, K., Gerengi, H., Kaya, E., Yıldız, M., (2022). Farklı Bekletme Süreli Derin Kriyojenik İşlemin Sementasyon Çeliğinin Korozyon Davranışına Etkisinin Araştırılması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(2): 703-712.
  • [19] Kam, M., İpekçi, A., Argun, K., (2022). Experimental investigation and optimization of machining parameters of deep cryogenically treated and tempered steels in electrical discharge machining process. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236(5): 1927-1935.
  • [20] Güney, F., Menderes, K., (2022). AISI 8620 (20NiCrMo2) Çeliğinin Mekanik Özelliklerine Kriyojenik İşlemin Etkisinin İncelenmesi. İmalat Teknolojileri ve Uygulamaları, 3(2): 22-31.
  • [21] Lal, D.M., Renganarayanan, S., Kalanidhi, A., (2001). Cryogenic treatment to augment wear resistance of tool and die steels. Cryogenics, 41(3): 149-155.
  • [22] Akincioğlu, S., Gökkaya, H., Uygur, İ., (2015). A review of cryogenic treatment on cutting tools. The International Journal of Advanced Manufacturing Technology, 78(9-12): 1609-1627.
  • [23] Gill, S.S., (2012). Machining performance of cryogenically treated AISI M2 high speed steel tools. Journal of Engineering Research and Studies, 3(2): 45-49.
  • [24] Shirbhate, A., Deshpande, N., Puri, Y., (2012). Effect of cryogenic treatment on cutting torque and surface finish in drilling operation with AISI M2 high speed steel. Int. J. Mech. Eng. Rob. Res, 1(2): 50-58.
  • [25] Firouzdor, V., Nejati, E., Khomamizadeh, F., (2008). Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill. Journal of materials processing technology, 206(1-3): 467-472.
  • [26] Podgornik, B., Leskovšek, V., Vižintin, J., (2009). Influence of deep-cryogenic treatment on tribological properties of P/M high-speed steel. Materials and Manufacturing Processes, 24(7-8): 734-738.
  • [27] Taguchi, G., (1987). System of experimental design, quality resources, New York, USA.
  • [28] Tiwary, V.K., Arunkumar, P., Malik, V.R., (2023). Investigations on microwave-assisted welding of MEX additive manufactured parts to overcome the bed size limitation. Journal of Advanced Joining Processes, 7: 100141.
  • [29] Tiwary, V.K., Padmakumar, A., Malik, V.R., (2022). Investigations on FSW of nylon micro-particle enhanced 3D printed parts applied to a Clark-Y UAV wing. Welding International, 36(8): 474-488.
  • [30] Tiwary, V.K., Padmakumar, A., Malik, V., (2022). Adhesive bonding of similar/dissimilar three-dimensional printed parts (ABS/PLA) considering joint design, surface treatments, and adhesive types. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(16): 8991-9002.
  • [31] Adin, M.Ş., İşcan, B., Baday, Ş., (2022). Optimization of welding parameters of AISI 431 and AISI 1020 joints joined by friction welding using taguchi method. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1): 453-470.
  • [32] Adin, M.Ş., İşcan, B., (2022). Optimization of process parameters of medium carbon steel joints joined by MIG welding using Taguchi method. European Mechanical Science, 6(1): 17-26.
  • [33] Ross, P.J., (1988). Taguchi technique for quality engineering. McGraw-Hill Professional, New York, USA
  • [34] Suthar, J., Teli, S., Murumkar, A., (2021). Drilling process improvement by Taguchi method. Materials Today: Proceedings, 47: 2814-2819.
  • [35] Sarikaya, M. et al., (2021). Cooling techniques to improve the machinability and sustainability of light-weight alloys: A state-of-the-art review. Journal of Manufacturing Processes, 62: 179-201.
  • [36] Markopoulos, A.P., Davim, J.P., (2017). Advanced machining processes: innovative modeling techniques. CRC Press, Taylor & Francis, 1-351.
  • [37] Giasin, K., Hodzic, A., Phadnis, V., Ayvar-Soberanis, S., (2016). Assessment of cutting forces and hole quality in drilling Al2024 aluminium alloy: experimental and finite element study. The International Journal of Advanced Manufacturing Technology, 87(5): 2041-2061.
  • [38] Aamir, M., Tolouei-Rad, M., Giasin, K., Vafadar, A., (2020). Feasibility of tool configuration and the effect of tool material, and tool geometry in multi-hole simultaneous drilling of Al2024. The International Journal of Advanced Manufacturing Technology, 111(3): 861-879.
  • [39] Aamir, M., Tolouei-Rad, M., Giasin, K., (2021). Multi-spindle drilling of Al2024 alloy and the effect of TiAlN and TiSiN-coated carbide drills for productivity improvement. The International Journal of Advanced Manufacturing Technology, 114(9): 3047-3056.
  • [40] Aamir, M., Tolouei-Rad, M., Vafadar, A., Raja, M.N.A., Giasin, K., (2020). Performance analysis of multi-spindle drilling of Al2024 with TiN and TiCN coated drills using experimental and artificial neural networks technique. Applied Sciences, 10(23): 8633.
  • [41] Santos, M.C., Machado, A.R., Sales, W.F., Barrozo, M.A., Ezugwu, E.O., (2016). Machining of aluminum alloys: a review. The International Journal of Advanced Manufacturing Technology, 86: 3067-3080.
  • [42] Ng, E., Szablewski, D., Dumitrescu, M., Elbestawi, M., Sokolowski, J., (2004). High speed face milling of a aluminium silicon alloy casting. CIRP Annals, 53(1): 69-72.
  • [43] Tash, M., Samuel, F., Mucciardi, F., Doty, H., Valtierra, S., (2006). Effect of metallurgical parameters on the machinability of heat-treated 356 and 319 aluminum alloys. Materials Science and Engineering: A, 434(1-2): 207-217.
  • [44] Fuh, K.-H., Wu, C.-F., (1995). A residual-stress model for the milling of aluminum alloy (2014-T6). Journal of Materials Processing Technology, 51(1-4): 87-105.
  • [45] Lahres, M., Müller-Hummel, P., Doerfel, O., (1997). Applicability of different hard coatings in dry milling aluminium alloys. Surface and Coatings Technology, 91(1-2): 116-121.
  • [46] Kurt, M., Bagci, E., Kaynak, Y., (2009). Application of Taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes. The International Journal of Advanced Manufacturing Technology, 40(5): 458-469.
  • [47] Phadke, M.S., (1995). Quality engineering using robust design. Prentice-Hill, Englewood Cliffs, NJ, USA.
  • [48] Çiçek, A., Kıvak, T., Ekici, E., (2015). Optimization of drilling parameters using Taguchi technique and response surface methodology (RSM) in drilling of AISI 304 steel with cryogenically treated HSS drills. Journal of Intelligent Manufacturing, 26(2): 295-305.
  • [49] Ross, P.J., (1996). Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design, 1-279, ‎ McGraw Hill, Boston, USA.
  • [50] Adin, M.Ş., (2022). Lazer kaynağı ile kaynak yapılan alüminyum alaşımlarının mekanik özelliklerinin araştırılması ve kaynak parametrelerinin taguchi ve anova yöntemleri kullanılarak optimizasyonu. Journal of Science, Technology and Engineering Research, 3(2): 50-59.
  • [51] Kumari, S., Bandhu, D., Muchhadiya, A., Abhishek, K., (2023). Recent trends in parametric influence and microstructural analysis of friction stir welding for polymer composites. Advances in Materials and Processing Technologies, 1-21.
  • [52] Murali Mohan, M., Venugopal Goud, E., Deva Kumar, M., Kumar, V., Kumar, M., “Parametric Optimization and Evaluation of Machining Performance for Aluminium-Based Hybrid Composite Using Utility-Taguchi Approach,” in Recent Advances in Smart Manufacturing and Materials: Select Proceedings of ICEM 2020, 2021: Springer, 289-300.
  • [53] Montgomery, D.C., (2017). Design and analysis of experiments, Ninth ed. John wiley & sons.
Year 2023, , 70 - 81, 20.06.2023
https://doi.org/10.26701/ems.1270937

Abstract

References

  • [1] Aamir, M., Giasin, K., Tolouei-Rad, M., Vafadar, A., (2020). A review: Drilling performance and hole quality of aluminium alloys for aerospace applications. Journal of Materials Research and Technology, 9(6): 12484-12500.
  • [2] Pinar, A.M., (2013). Optimization of process parameters with minimum surface roughness in the pocket machining of AA5083 aluminum alloy via Taguchi method. Arabian Journal for Science and Engineering, 38: 705-714.
  • [3] Campbell, F.C., (2008). Elements of metallurgy and engineering alloys. ASM international, 487-508.
  • [4] Zhao, J., Deng, Y., Tang, J., Zhang, J., (2019). Influence of strain rate on hot deformation behavior and recrystallization behavior under isothermal compression of Al-Zn-Mg-Cu alloy. Journal of Alloys and Compounds, 809: 151788.
  • [5] Sun, D. et al., (2018). Hole-making processes and their impacts on the microstructure and fatigue response of aircraft alloys. The International Journal of Advanced Manufacturing Technology, 94(5): 1719-1726.
  • [6] Zhu, Z. et al., (2018). Evaluation of novel tool geometries in dry drilling aluminium 2024-T351/titanium Ti6Al4V stack. Journal of Materials Processing Technology, 259: 270-281.
  • [7] Kalidas, S., DeVor, R.E., Kapoor, S.G., (2001). Experimental investigation of the effect of drill coatings on hole quality under dry and wet drilling conditions. Surface and Coatings Technology, 148(2-3): 117-128.
  • [8] Aamir, M., Tolouei-Rad, M., Giasin, K., Vafadar, A., (2020). Machinability of Al2024, Al6061, and Al5083 alloys using multi-hole simultaneous drilling approach. Journal of Materials Research and Technology, 9(5): 10991-11002.
  • [9] Jovičević-Klug, P., Puš, G., Jovičević-Klug, M., Žužek, B., Podgornik, B., (2022). Influence of heat treatment parameters on effectiveness of deep cryogenic treatment on properties of high-speed steels. Materials Science and Engineering: A, 829: 142157.
  • [10] Molinari, A., Pellizzari, M., Gialanella, S., Straffelini, G., Stiasny, K., (2001). Effect of deep cryogenic treatment on the mechanical properties of tool steels. Journal of materials processing technology, 118(1-3): 350-355.
  • [11] Da Silva, F.J., Franco, S.D., Machado, A.R., Ezugwu, E.O., Souza Jr, A.M., (2006). Performance of cryogenically treated HSS tools. Wear, 261(5-6): 674-685.
  • [12] Adin, M.Ş., (2022). Kriyojenik ısıl işlem uygulanmış özel tasarlanmış matkap uçları ile fiber takviyeli cam-epoksi kompozitin delme performansı ve mekanik özelliklerinin incelenmesi. Doktora Tezi, Batman Üniversitesi Lisansüstü Eğitim Enstitüsü, 1-266.
  • [13] Jovičević-Klug, P., Jovičević-Klug, M., Podgornik, B., (2020). Effectiveness of deep cryogenic treatment on carbide precipitation. Journal of Materials Research and Technology, 9(6): 13014-13026.
  • [14] Jovičević-Klug, P., Tóth, L., Podgornik, B., (2022). Comparison of K340 Steel Microstructure and Mechanical Properties Using Shallow and Deep Cryogenic Treatment. Coatings, 12(9): 1296.
  • [15] Akhbarizadeh, A., Shafyei, A., Golozar, M., (2009). Effects of cryogenic treatment on wear behavior of D6 tool steel. Materials & Design, 30(8): 3259-3264.
  • [16] Gürbüz, H., Baday, Ş., (2021). Milling Inconel 718 workpiece with cryogenically treated and untreated cutting tools. The International Journal of Advanced Manufacturing Technology, 116: 3135-3148.
  • [17] Baday, Ş., Ersöz, O., (2022). Comparative investigations of cryo-treated and untreated inserts on machinability of AISI 1050 by using response surface methodology, ANOVA and Taguchi design. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(3): 1751-1765.
  • [18] Güney, F., Menderes, K., Gerengi, H., Kaya, E., Yıldız, M., (2022). Farklı Bekletme Süreli Derin Kriyojenik İşlemin Sementasyon Çeliğinin Korozyon Davranışına Etkisinin Araştırılması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(2): 703-712.
  • [19] Kam, M., İpekçi, A., Argun, K., (2022). Experimental investigation and optimization of machining parameters of deep cryogenically treated and tempered steels in electrical discharge machining process. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236(5): 1927-1935.
  • [20] Güney, F., Menderes, K., (2022). AISI 8620 (20NiCrMo2) Çeliğinin Mekanik Özelliklerine Kriyojenik İşlemin Etkisinin İncelenmesi. İmalat Teknolojileri ve Uygulamaları, 3(2): 22-31.
  • [21] Lal, D.M., Renganarayanan, S., Kalanidhi, A., (2001). Cryogenic treatment to augment wear resistance of tool and die steels. Cryogenics, 41(3): 149-155.
  • [22] Akincioğlu, S., Gökkaya, H., Uygur, İ., (2015). A review of cryogenic treatment on cutting tools. The International Journal of Advanced Manufacturing Technology, 78(9-12): 1609-1627.
  • [23] Gill, S.S., (2012). Machining performance of cryogenically treated AISI M2 high speed steel tools. Journal of Engineering Research and Studies, 3(2): 45-49.
  • [24] Shirbhate, A., Deshpande, N., Puri, Y., (2012). Effect of cryogenic treatment on cutting torque and surface finish in drilling operation with AISI M2 high speed steel. Int. J. Mech. Eng. Rob. Res, 1(2): 50-58.
  • [25] Firouzdor, V., Nejati, E., Khomamizadeh, F., (2008). Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill. Journal of materials processing technology, 206(1-3): 467-472.
  • [26] Podgornik, B., Leskovšek, V., Vižintin, J., (2009). Influence of deep-cryogenic treatment on tribological properties of P/M high-speed steel. Materials and Manufacturing Processes, 24(7-8): 734-738.
  • [27] Taguchi, G., (1987). System of experimental design, quality resources, New York, USA.
  • [28] Tiwary, V.K., Arunkumar, P., Malik, V.R., (2023). Investigations on microwave-assisted welding of MEX additive manufactured parts to overcome the bed size limitation. Journal of Advanced Joining Processes, 7: 100141.
  • [29] Tiwary, V.K., Padmakumar, A., Malik, V.R., (2022). Investigations on FSW of nylon micro-particle enhanced 3D printed parts applied to a Clark-Y UAV wing. Welding International, 36(8): 474-488.
  • [30] Tiwary, V.K., Padmakumar, A., Malik, V., (2022). Adhesive bonding of similar/dissimilar three-dimensional printed parts (ABS/PLA) considering joint design, surface treatments, and adhesive types. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(16): 8991-9002.
  • [31] Adin, M.Ş., İşcan, B., Baday, Ş., (2022). Optimization of welding parameters of AISI 431 and AISI 1020 joints joined by friction welding using taguchi method. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1): 453-470.
  • [32] Adin, M.Ş., İşcan, B., (2022). Optimization of process parameters of medium carbon steel joints joined by MIG welding using Taguchi method. European Mechanical Science, 6(1): 17-26.
  • [33] Ross, P.J., (1988). Taguchi technique for quality engineering. McGraw-Hill Professional, New York, USA
  • [34] Suthar, J., Teli, S., Murumkar, A., (2021). Drilling process improvement by Taguchi method. Materials Today: Proceedings, 47: 2814-2819.
  • [35] Sarikaya, M. et al., (2021). Cooling techniques to improve the machinability and sustainability of light-weight alloys: A state-of-the-art review. Journal of Manufacturing Processes, 62: 179-201.
  • [36] Markopoulos, A.P., Davim, J.P., (2017). Advanced machining processes: innovative modeling techniques. CRC Press, Taylor & Francis, 1-351.
  • [37] Giasin, K., Hodzic, A., Phadnis, V., Ayvar-Soberanis, S., (2016). Assessment of cutting forces and hole quality in drilling Al2024 aluminium alloy: experimental and finite element study. The International Journal of Advanced Manufacturing Technology, 87(5): 2041-2061.
  • [38] Aamir, M., Tolouei-Rad, M., Giasin, K., Vafadar, A., (2020). Feasibility of tool configuration and the effect of tool material, and tool geometry in multi-hole simultaneous drilling of Al2024. The International Journal of Advanced Manufacturing Technology, 111(3): 861-879.
  • [39] Aamir, M., Tolouei-Rad, M., Giasin, K., (2021). Multi-spindle drilling of Al2024 alloy and the effect of TiAlN and TiSiN-coated carbide drills for productivity improvement. The International Journal of Advanced Manufacturing Technology, 114(9): 3047-3056.
  • [40] Aamir, M., Tolouei-Rad, M., Vafadar, A., Raja, M.N.A., Giasin, K., (2020). Performance analysis of multi-spindle drilling of Al2024 with TiN and TiCN coated drills using experimental and artificial neural networks technique. Applied Sciences, 10(23): 8633.
  • [41] Santos, M.C., Machado, A.R., Sales, W.F., Barrozo, M.A., Ezugwu, E.O., (2016). Machining of aluminum alloys: a review. The International Journal of Advanced Manufacturing Technology, 86: 3067-3080.
  • [42] Ng, E., Szablewski, D., Dumitrescu, M., Elbestawi, M., Sokolowski, J., (2004). High speed face milling of a aluminium silicon alloy casting. CIRP Annals, 53(1): 69-72.
  • [43] Tash, M., Samuel, F., Mucciardi, F., Doty, H., Valtierra, S., (2006). Effect of metallurgical parameters on the machinability of heat-treated 356 and 319 aluminum alloys. Materials Science and Engineering: A, 434(1-2): 207-217.
  • [44] Fuh, K.-H., Wu, C.-F., (1995). A residual-stress model for the milling of aluminum alloy (2014-T6). Journal of Materials Processing Technology, 51(1-4): 87-105.
  • [45] Lahres, M., Müller-Hummel, P., Doerfel, O., (1997). Applicability of different hard coatings in dry milling aluminium alloys. Surface and Coatings Technology, 91(1-2): 116-121.
  • [46] Kurt, M., Bagci, E., Kaynak, Y., (2009). Application of Taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes. The International Journal of Advanced Manufacturing Technology, 40(5): 458-469.
  • [47] Phadke, M.S., (1995). Quality engineering using robust design. Prentice-Hill, Englewood Cliffs, NJ, USA.
  • [48] Çiçek, A., Kıvak, T., Ekici, E., (2015). Optimization of drilling parameters using Taguchi technique and response surface methodology (RSM) in drilling of AISI 304 steel with cryogenically treated HSS drills. Journal of Intelligent Manufacturing, 26(2): 295-305.
  • [49] Ross, P.J., (1996). Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design, 1-279, ‎ McGraw Hill, Boston, USA.
  • [50] Adin, M.Ş., (2022). Lazer kaynağı ile kaynak yapılan alüminyum alaşımlarının mekanik özelliklerinin araştırılması ve kaynak parametrelerinin taguchi ve anova yöntemleri kullanılarak optimizasyonu. Journal of Science, Technology and Engineering Research, 3(2): 50-59.
  • [51] Kumari, S., Bandhu, D., Muchhadiya, A., Abhishek, K., (2023). Recent trends in parametric influence and microstructural analysis of friction stir welding for polymer composites. Advances in Materials and Processing Technologies, 1-21.
  • [52] Murali Mohan, M., Venugopal Goud, E., Deva Kumar, M., Kumar, V., Kumar, M., “Parametric Optimization and Evaluation of Machining Performance for Aluminium-Based Hybrid Composite Using Utility-Taguchi Approach,” in Recent Advances in Smart Manufacturing and Materials: Select Proceedings of ICEM 2020, 2021: Springer, 289-300.
  • [53] Montgomery, D.C., (2017). Design and analysis of experiments, Ninth ed. John wiley & sons.
There are 53 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Mehmet Şükrü Adin 0000-0002-2307-9669

Publication Date June 20, 2023
Acceptance Date April 9, 2023
Published in Issue Year 2023

Cite

APA Adin, M. Ş. (2023). Performances of cryo-treated and untreated cutting tools in machining of AA7075 aerospace aluminium alloy. European Mechanical Science, 7(2), 70-81. https://doi.org/10.26701/ems.1270937

Cited By




Optimization and characterization of boric acid powder mixed electrical discharge machining of Ti-6Al-4V ELI
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
https://doi.org/10.1177/09544089241282625














Predictive and experimental analysis of forces in die-less forming using artificial intelligence techniques
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
https://doi.org/10.1177/09544089241235473


















Dergi TR Dizin'de Taranmaktadır.

Flag Counter