Research Article
BibTex RIS Cite

Optimisation of design parameters of the finned tube heat exchanger by numerical simulations and artificial neural networks for the condensing wall hang boilers

Year 2023, , 160 - 171, 20.09.2023
https://doi.org/10.26701/ems.1298839

Abstract

This research investigates the use of computational fluid dynamics (CFD) and artificial neural networks (ANNs) to optimise the design of finned tube heat exchangers for use in condensing wall-mounted boilers (WHBcs). Fin height, thickness, and distance are selected as the input design parameters, and the internal volume of the heat engine is modelled using the CFDHT (CFD and heat transfer) method. Different ANN structures are trained and tested on the resulting data to identify the optimal training process. The trained ANN is then used to predict various output parameters, including total heat transfer on the inner surface of the tube, maximum temperature on the fins, total heat transfer per unit volume of the heat exchanger, and pressure drop between the inlet and outlet of the internal volume. The optimal design scenarios are evaluated based on design criteria, and the ANN is found to have good statistical performance, with an average accuracy of 1.00018 and a maximum relative error of 9.16%. The ANN is able to accurately estimate the optimal design case.

Supporting Institution

The Scientific and Technological Research Council of Turkey

Project Number

TUBITAK-TEYDEB 5180092 & 3130798

Thanks

The Scientific and Technological Research Council of Turkey partially supported this study (as projects grant no: TUBITAK-TEYDEB 5180092 & 3130798). We gratefully acknowledge this support.

References

  • Wais, P. (2010). Fluid flow consideration in fin-tube heat exchanger optimization. Archives of Thermodynamics, 31: 87–104. doi:10.2478/v10173-010-0016-7.
  • Bilirgen, H., Dunbar S., Levy E. K. (2013). Numerical modelling of finned heat exchangers. Applied Thermal Engineering, 61: 278-288. doi:10.1016/j.applthermaleng.2013.08.002
  • Kim, N. H., Youn B., Webb R. L. (1999). Air side heat transfer and friction correlations for plain fin and tube heat exchangers with staggered tube arrangements. ASME Transaction, 121. doi:10.1115/1.2826030.
  • Tutar, M., Akkoca A. (2004). Numerical analysis of fluid flow and heat transfer characteristics in three-dimensional plate fin and tube heat exchanger. Numerical Heat Transfer, Part A: Applications, 46:3, 301-321. doi:10.1080/10407780490474762
  • Wang, C. C., Lee, W. S., Sheu, W. J. (2001). A comparative study of compact enhanced fin and tube heat exchangers. International Journal of Heat and Mass Transfer, 44(18): 3565-3573. doi:10.1016/S0017-9310(01)00011-4.
  • Du, Y. J., Wang, C. C. (2000). An experimental study of the air side performance of superslit fin and tube heat exchangers. International Journal of Heat and Mass Transfer, 43(24) : 4475-4482. doi: 10.1016/S0017-9310(00)00082-X.
  • Perrotin, T., Clodic, D. (2003). Fin efficiency calculation in enhanced fin and tube heat exchanger in dry conditions. 21st International Congress of Refrigeration: Serving the Needs of Mankind. ISBN: 2913149324.
  • Antonescu, N., Stanescu, P.D. (2017). Computational model for a consensing boiler with finned tubes heat exchanger. Energy Procedia, 112 : 555-562. doi:10.1016/j.egypro.2017.03.1116.
  • Balanescu, D. T., Homutescu V.M. (2017). Experimental study on the combustion system optimization in the case of a 36 kW condensing boiler. Procedia Engineering, 181 : 706-711. doi:10.1016/j.proeng.2017.02.453.
  • Vidyadhar H. I., Mahesh S., Malpani R., Sapre M., Kulkarni A. J. (2019). Adaptive range genetic algorithm: A hybrid optimization approach and its application in the design and economic optimization of shell-and-tube heat exchanger. Engineering Applications of Artificial Intelligence, 85 : 444-461. doi:10.1016/j.engappai.2019.07.001.
  • Zoebiry N., Humfeld K.D. (2021). A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications. Engineering Applications of Artificial Intelligence. 101: 104232. doi:10.1016/j.engappai.2021.104232.
  • Shang Z. (2005). Application of artificial intelligence CFD based on neural network in vapor-water two-phase flow. Engineering Applications of Artificial Intelligence. 18 : 663-671. doi: 10.1016/j.engappai.2005.01.007.
  • Cheng Y., Huang Y., Pang B., Zhang W. (2018). ThermalNet: A deep reinforcement learning-based combustion optimization system for coal-fired boiler. Engineering Applications of Artificial Intelligence. 74 : 303-311. doi: 10.1016/j.engappai.2018.07.003.
  • Mohanraj M., Jayaraj S., Muraleedharan C. (2015). Applications of artificial neural networks for thermal analysis of heat exchangers – A review. International Journal of Thermal Sciences. 90 : 150-172. doi:10.1016/j.ijthermalsci.2014.11.030.
  • Singh V., Aute V., Radermacher R. (2009). A heat exchanger model for air-to-refrigerant fin-and-tube heat exchanger with arbitrary fin sheet. International Journal of Refrigeration. 32 : 1724-1735. doi:10.1016/j.ijrefrig.2009.05.011.
  • Pacheco-Vega A., Diaz G., Sen M., Yang K. T., Mcclain R. L. (2001). Heat rate predictions in humid air-water heat exchangers using correlations and neural networks. Journal Heat Transfer. 123 : 348-354. doi:10.1115/1.1351167.
  • Wu Z.G., Zhang J.Z., Tao Y.B., He Y.L., Tao W.Q. (2008). Application of artificial neural network method for performance prediction of Gas cooler in a CO2 heat pump. International Journal of Heat Mass Transfer. 51 : 5459-5464. doi:10.1016/j.ijheatmasstransfer.2008.03.009.
  • Kamsuwan C., Wang X., Seng L.P., Xian C.K., Piemjaiswang R., Piumsomboon P., Pratumwal Y., Otarawanna S., Chalermsinsuwan B., (2023). Simulation of nanofluid minro-channel heat exchanger using computational fluid dynamics integrated with artificial neural network. Energ Reports. 9: 239-247. doi: 10.1016/j.egyr.2022.10.412.
  • Giannetti N., Redoo M.A., Sholahudin, Jeong J., Yamaguchi S., Saito K., Kim H. (2020). Prediction of two-phase flow distribution in microchannel heat exchangers using artificial neural network. International Journal of Refrigeration. 111: 53-63. doi: 10.1016/j.ijrefrig.2019.11.028.
  • Xie C., Yan G., Ma Q., Elmasry Y., Singh P. K., Algelany A.M., Wae-hayee M. (2022). Flow and heat transfer optimization of a fin-tube heat exchanger with vortex generators using response surface methodology and artificial neural network. 39: 102445. doi: 10.1016/j.csite.2022.102445.
  • Zhang T., Chen L., Wang J. (2023). Multi-objective optimization of elliptical tube fin heat exchangers based on neural networks and genetic algorithm. Energy. 269: 126729. doi: 10.1016/j.energy.2023.126729.
  • Satyavada H., Baldi S. (2018). Monitoring energy efficiency of condensing boilers via hybrid first-principle modelling and estimation. Energy.142: 121-129. doi: 10.1016/j.energy.2017.09.124.
  • Seban R.A., McLaughlin E.F. (1963). Heat transfer in tube coils with laminar and turbulent flow. International Journal of Heat and Mass Transfer. 6 : 387-395. doi:10.1016/0017-9310(63)90100-5.
  • EN 15502 -1:2012+A1:2015, (2015). Gas-fired heating boilers Part 1: General requirements and tests-TC109 (Issue February), European Committee for Standardization.
  • Yılmaz, S., Kumlutaş, D., Yücekaya, U. A., Cumbul, A. Y. (2021). Prediction of the equilibrium compositions in the combustion products of a domestic boiler. Energy. 233 : 121-123. doi: 10.1016/j.energy.2021.121123.
  • Cumbul A.Y., (2018). Evaluation of energy efficiency of a power-plant using energy analysis. (Msc), Dokuz Eylül University, Turkey. https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=hcgrYffRbz0Z44UJEuLtwQ0CunVOm65XkkDQY2Js7LjW7oYNRQDI9MV4BbWX-H3L. NASA report SP-3001, (accessed date: 22 June2018). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19630013835.pdf
  • Incropera, F.P., Dewitt, D.P. (1996). Fundamentals of Heat and Mass Transfer, John Wiley&Sons.
  • Kreith K. (2000). The CrcHandbook of Thermal Engineering, Crc Press, Boca Raton.
  • Wang. B.X. (2000). Heat Transfer Science and Technology, Higher Education Press.
Year 2023, , 160 - 171, 20.09.2023
https://doi.org/10.26701/ems.1298839

Abstract

Project Number

TUBITAK-TEYDEB 5180092 & 3130798

References

  • Wais, P. (2010). Fluid flow consideration in fin-tube heat exchanger optimization. Archives of Thermodynamics, 31: 87–104. doi:10.2478/v10173-010-0016-7.
  • Bilirgen, H., Dunbar S., Levy E. K. (2013). Numerical modelling of finned heat exchangers. Applied Thermal Engineering, 61: 278-288. doi:10.1016/j.applthermaleng.2013.08.002
  • Kim, N. H., Youn B., Webb R. L. (1999). Air side heat transfer and friction correlations for plain fin and tube heat exchangers with staggered tube arrangements. ASME Transaction, 121. doi:10.1115/1.2826030.
  • Tutar, M., Akkoca A. (2004). Numerical analysis of fluid flow and heat transfer characteristics in three-dimensional plate fin and tube heat exchanger. Numerical Heat Transfer, Part A: Applications, 46:3, 301-321. doi:10.1080/10407780490474762
  • Wang, C. C., Lee, W. S., Sheu, W. J. (2001). A comparative study of compact enhanced fin and tube heat exchangers. International Journal of Heat and Mass Transfer, 44(18): 3565-3573. doi:10.1016/S0017-9310(01)00011-4.
  • Du, Y. J., Wang, C. C. (2000). An experimental study of the air side performance of superslit fin and tube heat exchangers. International Journal of Heat and Mass Transfer, 43(24) : 4475-4482. doi: 10.1016/S0017-9310(00)00082-X.
  • Perrotin, T., Clodic, D. (2003). Fin efficiency calculation in enhanced fin and tube heat exchanger in dry conditions. 21st International Congress of Refrigeration: Serving the Needs of Mankind. ISBN: 2913149324.
  • Antonescu, N., Stanescu, P.D. (2017). Computational model for a consensing boiler with finned tubes heat exchanger. Energy Procedia, 112 : 555-562. doi:10.1016/j.egypro.2017.03.1116.
  • Balanescu, D. T., Homutescu V.M. (2017). Experimental study on the combustion system optimization in the case of a 36 kW condensing boiler. Procedia Engineering, 181 : 706-711. doi:10.1016/j.proeng.2017.02.453.
  • Vidyadhar H. I., Mahesh S., Malpani R., Sapre M., Kulkarni A. J. (2019). Adaptive range genetic algorithm: A hybrid optimization approach and its application in the design and economic optimization of shell-and-tube heat exchanger. Engineering Applications of Artificial Intelligence, 85 : 444-461. doi:10.1016/j.engappai.2019.07.001.
  • Zoebiry N., Humfeld K.D. (2021). A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications. Engineering Applications of Artificial Intelligence. 101: 104232. doi:10.1016/j.engappai.2021.104232.
  • Shang Z. (2005). Application of artificial intelligence CFD based on neural network in vapor-water two-phase flow. Engineering Applications of Artificial Intelligence. 18 : 663-671. doi: 10.1016/j.engappai.2005.01.007.
  • Cheng Y., Huang Y., Pang B., Zhang W. (2018). ThermalNet: A deep reinforcement learning-based combustion optimization system for coal-fired boiler. Engineering Applications of Artificial Intelligence. 74 : 303-311. doi: 10.1016/j.engappai.2018.07.003.
  • Mohanraj M., Jayaraj S., Muraleedharan C. (2015). Applications of artificial neural networks for thermal analysis of heat exchangers – A review. International Journal of Thermal Sciences. 90 : 150-172. doi:10.1016/j.ijthermalsci.2014.11.030.
  • Singh V., Aute V., Radermacher R. (2009). A heat exchanger model for air-to-refrigerant fin-and-tube heat exchanger with arbitrary fin sheet. International Journal of Refrigeration. 32 : 1724-1735. doi:10.1016/j.ijrefrig.2009.05.011.
  • Pacheco-Vega A., Diaz G., Sen M., Yang K. T., Mcclain R. L. (2001). Heat rate predictions in humid air-water heat exchangers using correlations and neural networks. Journal Heat Transfer. 123 : 348-354. doi:10.1115/1.1351167.
  • Wu Z.G., Zhang J.Z., Tao Y.B., He Y.L., Tao W.Q. (2008). Application of artificial neural network method for performance prediction of Gas cooler in a CO2 heat pump. International Journal of Heat Mass Transfer. 51 : 5459-5464. doi:10.1016/j.ijheatmasstransfer.2008.03.009.
  • Kamsuwan C., Wang X., Seng L.P., Xian C.K., Piemjaiswang R., Piumsomboon P., Pratumwal Y., Otarawanna S., Chalermsinsuwan B., (2023). Simulation of nanofluid minro-channel heat exchanger using computational fluid dynamics integrated with artificial neural network. Energ Reports. 9: 239-247. doi: 10.1016/j.egyr.2022.10.412.
  • Giannetti N., Redoo M.A., Sholahudin, Jeong J., Yamaguchi S., Saito K., Kim H. (2020). Prediction of two-phase flow distribution in microchannel heat exchangers using artificial neural network. International Journal of Refrigeration. 111: 53-63. doi: 10.1016/j.ijrefrig.2019.11.028.
  • Xie C., Yan G., Ma Q., Elmasry Y., Singh P. K., Algelany A.M., Wae-hayee M. (2022). Flow and heat transfer optimization of a fin-tube heat exchanger with vortex generators using response surface methodology and artificial neural network. 39: 102445. doi: 10.1016/j.csite.2022.102445.
  • Zhang T., Chen L., Wang J. (2023). Multi-objective optimization of elliptical tube fin heat exchangers based on neural networks and genetic algorithm. Energy. 269: 126729. doi: 10.1016/j.energy.2023.126729.
  • Satyavada H., Baldi S. (2018). Monitoring energy efficiency of condensing boilers via hybrid first-principle modelling and estimation. Energy.142: 121-129. doi: 10.1016/j.energy.2017.09.124.
  • Seban R.A., McLaughlin E.F. (1963). Heat transfer in tube coils with laminar and turbulent flow. International Journal of Heat and Mass Transfer. 6 : 387-395. doi:10.1016/0017-9310(63)90100-5.
  • EN 15502 -1:2012+A1:2015, (2015). Gas-fired heating boilers Part 1: General requirements and tests-TC109 (Issue February), European Committee for Standardization.
  • Yılmaz, S., Kumlutaş, D., Yücekaya, U. A., Cumbul, A. Y. (2021). Prediction of the equilibrium compositions in the combustion products of a domestic boiler. Energy. 233 : 121-123. doi: 10.1016/j.energy.2021.121123.
  • Cumbul A.Y., (2018). Evaluation of energy efficiency of a power-plant using energy analysis. (Msc), Dokuz Eylül University, Turkey. https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=hcgrYffRbz0Z44UJEuLtwQ0CunVOm65XkkDQY2Js7LjW7oYNRQDI9MV4BbWX-H3L. NASA report SP-3001, (accessed date: 22 June2018). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19630013835.pdf
  • Incropera, F.P., Dewitt, D.P. (1996). Fundamentals of Heat and Mass Transfer, John Wiley&Sons.
  • Kreith K. (2000). The CrcHandbook of Thermal Engineering, Crc Press, Boca Raton.
  • Wang. B.X. (2000). Heat Transfer Science and Technology, Higher Education Press.
There are 29 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Hasan Avcı 0000-0002-3297-1229

Dilek Kumlutaş 0000-0002-0778-785X

Özgün Özer 0000-0003-4130-2323

Utku Alp Yücekaya 0000-0003-0934-5593

Project Number TUBITAK-TEYDEB 5180092 & 3130798
Publication Date September 20, 2023
Acceptance Date July 19, 2023
Published in Issue Year 2023

Cite

APA Avcı, H., Kumlutaş, D., Özer, Ö., Yücekaya, U. A. (2023). Optimisation of design parameters of the finned tube heat exchanger by numerical simulations and artificial neural networks for the condensing wall hang boilers. European Mechanical Science, 7(3), 160-171. https://doi.org/10.26701/ems.1298839

Dergi TR Dizin'de Taranmaktadır.

Flag Counter