Research Article
BibTex RIS Cite

Investigation of the velocity, mach number, and turbulent parameters for different projectile rear geometry

Year 2023, , 296 - 306, 20.12.2023
https://doi.org/10.26701/ems.1399103

Abstract

A firearm projectile consists of four main parts. The end part of the cartridge is called the bullet (core). When the weapon is fired, the bullet (core) shoots towards the target. In the literature, there are studies examining projectile geometries in terms of projectile velocity, range, and impact factor. By redesigning the geometric features, the velocity and turbulence states of the bullet can be improved. Therefore, in this study, a projectile with different rear geometries is analyzed in terms of velocity, turbulence energy, and Mach number. For projectile rear geometry, Sharp, 45-degree, and curved rear geometries are analyzed. After the analysis, parameters such as velocity, turbulent energy, and Mach number were analyzed. The results were then compared with each other and the most effective geometry was obtained.

References

  • [1] Doğru, M. H. (2017). Investigation of Velocity Distribution and Turbulent Energy for the Different Tip Shaped Projectiles. Çukurova University Journal of the Faculty of Engineering and Architecture, 32(3), 39-46. DOI: 10.21605/cukurovaummfd.357183
  • [2] Subaşı, M., Doğru, M. H., Yeter, E., & Yılmaz, N. F. (2020). Investıgatıon of The Bullet Impact Energy Performance Accordıng to Varıable Tıp Geometry. The International Journal of Materials and Engineering Technology, 3(1), 10-15.
  • [3] Christman, D. R., & Gehring, J. W. (1966). Analysis of high‐velocity projectile penetration mechanics. Journal of Applied Physics, 37(4), 1579-1587. DOI: 10.1063/1.1708570
  • [4] Shokrieh, M. M., & Javadpour, G. H. (2008). Penetration analysis of a projectile in ceramic composite armor. Composite structures, 82(2), 269-276. DOI: 10.1016/j.compstruct.2007.01.023
  • [5] Lecysyn, N., Dandrieux, A., Heymes, F., Slangen, P., Munier, L., Lapebie, E., ... & Dusserre, G. (2008). Preliminary study of ballistic impact on an industrial tank: Projectile velocity decay. Journal of Loss Prevention in the Process Industries, 21(6),627-634. DOI: 10.1016/j.jlp.2008.06.006
  • [6] Rausch J., Roberts B. (1975). Reaction Control System Aerodynamic Interaction Effects on Space Shuttle Orbiter, Journal of Spacecraft and Rockets, 12, 660-666. DOI: 10.2514/3.57032
  • [7] Srivastava B. (1998). Aerodynamic Performance of Supersonic Missile Body-and Wing Tip-Mounted Lateral Jets, Journal of Spacecraft and Rockets, 35, 278-286. DOI: 10.2514/2.3352
  • [8] Ma J., Chen Z-h., Huang Z-g., Gao J-g., Zhao Q. (2016). Investigation on the Flow Control of Micro-Vanes on a Supersonic Spinning Projectile, Defence Technology, 12, 227-233. DOI: 10.1016/j.dt.2016.01.008
  • [9] Jiang Z, Huang Y, Takayama K. (2004). Shocked Flows Induced by Supersonic Projectiles Moving in Tubes, Computers & fluids, 33, 953-966. DOI: 10.1016/S0045-7930(03)00041-0
  • [10] Gupta, N. K., Iqbal, M. A., & Sekhon, G. S. (2007). Effect of projectile nose shape, impact velocity and target thickness on deformation behavior of aluminum plates. International Journal of Solids and Structures, 44(10), 3411-3439. DOI: 10.1016/j.ijsolstr.2006.09.034
  • [11] Lam, C.K.G. and Bremhorst, K.A. (1981). Modified Form of Model for Predicting Wall Turbulence, ASME Journal of Fluids Engineering, Vol.103, pp. 456-460. DOI: 10.1115/1.3240815
Year 2023, , 296 - 306, 20.12.2023
https://doi.org/10.26701/ems.1399103

Abstract

References

  • [1] Doğru, M. H. (2017). Investigation of Velocity Distribution and Turbulent Energy for the Different Tip Shaped Projectiles. Çukurova University Journal of the Faculty of Engineering and Architecture, 32(3), 39-46. DOI: 10.21605/cukurovaummfd.357183
  • [2] Subaşı, M., Doğru, M. H., Yeter, E., & Yılmaz, N. F. (2020). Investıgatıon of The Bullet Impact Energy Performance Accordıng to Varıable Tıp Geometry. The International Journal of Materials and Engineering Technology, 3(1), 10-15.
  • [3] Christman, D. R., & Gehring, J. W. (1966). Analysis of high‐velocity projectile penetration mechanics. Journal of Applied Physics, 37(4), 1579-1587. DOI: 10.1063/1.1708570
  • [4] Shokrieh, M. M., & Javadpour, G. H. (2008). Penetration analysis of a projectile in ceramic composite armor. Composite structures, 82(2), 269-276. DOI: 10.1016/j.compstruct.2007.01.023
  • [5] Lecysyn, N., Dandrieux, A., Heymes, F., Slangen, P., Munier, L., Lapebie, E., ... & Dusserre, G. (2008). Preliminary study of ballistic impact on an industrial tank: Projectile velocity decay. Journal of Loss Prevention in the Process Industries, 21(6),627-634. DOI: 10.1016/j.jlp.2008.06.006
  • [6] Rausch J., Roberts B. (1975). Reaction Control System Aerodynamic Interaction Effects on Space Shuttle Orbiter, Journal of Spacecraft and Rockets, 12, 660-666. DOI: 10.2514/3.57032
  • [7] Srivastava B. (1998). Aerodynamic Performance of Supersonic Missile Body-and Wing Tip-Mounted Lateral Jets, Journal of Spacecraft and Rockets, 35, 278-286. DOI: 10.2514/2.3352
  • [8] Ma J., Chen Z-h., Huang Z-g., Gao J-g., Zhao Q. (2016). Investigation on the Flow Control of Micro-Vanes on a Supersonic Spinning Projectile, Defence Technology, 12, 227-233. DOI: 10.1016/j.dt.2016.01.008
  • [9] Jiang Z, Huang Y, Takayama K. (2004). Shocked Flows Induced by Supersonic Projectiles Moving in Tubes, Computers & fluids, 33, 953-966. DOI: 10.1016/S0045-7930(03)00041-0
  • [10] Gupta, N. K., Iqbal, M. A., & Sekhon, G. S. (2007). Effect of projectile nose shape, impact velocity and target thickness on deformation behavior of aluminum plates. International Journal of Solids and Structures, 44(10), 3411-3439. DOI: 10.1016/j.ijsolstr.2006.09.034
  • [11] Lam, C.K.G. and Bremhorst, K.A. (1981). Modified Form of Model for Predicting Wall Turbulence, ASME Journal of Fluids Engineering, Vol.103, pp. 456-460. DOI: 10.1115/1.3240815
There are 11 citations in total.

Details

Primary Language English
Subjects Weapon Systems
Journal Section Research Article
Authors

Mehmet Hanifi Doğru 0000-0001-6038-8308

İbrahim Göv 0000-0002-5513-0158

Publication Date December 20, 2023
Submission Date December 1, 2023
Acceptance Date December 19, 2023
Published in Issue Year 2023

Cite

APA Doğru, M. H., & Göv, İ. (2023). Investigation of the velocity, mach number, and turbulent parameters for different projectile rear geometry. European Mechanical Science, 7(4), 296-306. https://doi.org/10.26701/ems.1399103

Dergi TR Dizin'de Taranmaktadır.

Flag Counter