Research Article
BibTex RIS Cite
Year 2024, , 38 - 46, 20.03.2024
https://doi.org/10.26701/ems.1428860

Abstract

References

  • Shanthi, R., Anandan, S., & Ramalingam, V. (2012). Heat transfer enhancement using nanofluids: An overview. Thermal Science, 16(2): 423–444. doi:10.2298/tsci110201003s
  • Gürdal, M., Pazarlıoğlu, H. K., Tekir, M., Arslan, K., & Gedik, E. (2022). Numerical investigation on turbulent flow and heat transfer characteristics of Ferro-nanofluid flowing in dimpled tube under magnetic field effect. Applied Thermal Engineering, 200: 117655. https://doi.org/10.1016/j.applthermaleng.2021.117655
  • Dewan, A., Mahanta, P., Raju, K. S., & Kumar, P. S. (2004). Review of passive heat transfer augmentation techniques. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 218(7): 509–527. doi:10.1243/0957650042456953
  • Sheikholeslami, M., Gorji-Bandpy, M., & Ganji, D. D. (2015). Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices. Renewable and Sustainable Energy Reviews, 49: 444–469. doi:10.1016/j.rser.2015.04.113
  • Léal, L., Miscevic, M., Lavieille, P., Amokrane, M., Pigache, F., Topin, F., … Tadrist, L. (2013). An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials. International Journal of Heat and Mass Transfer, 61:505-524. doi:10.1016/j.ijheatmasstransfer.2013.01.083
  • Mousavi Ajarostaghi, S. S., Zaboli, M., Javadi, H., Badenes, B., & Urchueguia, J. F. (2022). A review of recent passive heat transfer enhancement methods. Energies, 15(3): 986. https://doi.org/10.3390/en15030986
  • Kiwan, S., & Al-Nimr, M. A. (2001). Using Porous Fins for Heat Transfer Enhancement. Journal of Heat Transfer, 123(4), 790. doi:10.1115/1.1371922
  • Pavel, B. I., & Mohamad, A. A. (2004). An experimental and numerical study on heat transfer enhancement for gas heat exchangers fitted with porous media. International Journal of Heat and Mass Transfer, 47(23): 4939–4952. doi:10.1016/j.ijheatmasstransfer.2004.06.014
  • Wang, B., Hong, Y., Hou, X., Xu, Z., Wang, P., Fang, X., & Ruan, X. (2015). Numerical configuration design and investigation of heat transfer enhancement in pipes filled with gradient porous materials. Energy Conversion and Management, 105: 206–215. doi:10.1016/j.enconman.2015.07.064
  • Pethkool, S., Eiamsa-ard, S., Kwankaomeng, S., & Promvonge, P. (2011). Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube. International Communications in Heat and Mass Transfer, 38(3): 340–347. doi:10.1016/j.icheatmasstransfer.2010.11.014
  • Kareem, Z. S., Mohd Jaafar, M. N., Lazim, T. M., Abdullah, S., & AbdulWahid, A. F. (2015). Heat transfer enhancement in two-start spirally corrugated tube. Alexandria Engineering Journal, 54(3): 415–422. doi:10.1016/j.aej.2015.04.001
  • Kareem, Z. S., Mohd Jaafar, M. N., Lazim, T. M., Abdullah, S., & Abdulwahid, A. F. (2015). Passive heat transfer enhancement review in corrugation. Experimental Thermal and Fluid Science, 68: 22–38. doi:10.1016/j.expthermflusci.2015.04.012
  • Kareem, Z. S., Abdullah, S., Lazim, T. M., Mohd Jaafar, M. N., & Abdul Wahid, A. F. (2015). Heat transfer enhancement in three-start spirally corrugated tube: Experimental and numerical study. Chemical Engineering Science, 134: 746.
  • Nuntaphan, A., Vithayasai, S., Vorayos, N., Vorayos, N., & Kiatsiriroat, T. (2010). Use of oscillating heat pipe technique as an extended surface in wire-on-tube heat exchanger for heat transfer enhancement. International Communications in Heat and Mass Transfer, 37(3): 287–292. doi:10.1016/j.icheatmasstransfer.2009.11.006
  • Nagarani, N., Mayilsamy, K., Murugesan, A., & Kumar, G. S. (2014). Review of the utilization of extended surfaces in heat transfer problems. Renewable and Sustainable Energy Reviews, 29: 604–613. doi:10.1016/j.rser.2013.08.068
  • Yadav, V., Baghel, K., Kumar, R., & Kadam, S. T. (2016). Numerical investigation of heat transfer in extended surface microchannels. International Journal of Heat and Mass Transfer, 93: 612–622. doi:10.1016/j.ijheatmasstransfer.2015.10.023
  • Bi, C., Tang, G. H., & Tao, W. Q. (2013). Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves. Applied Thermal Engineering, 55(1-2): 121–132. doi:10.1016/j.applthermaleng.2013.03.007
  • Turnow, J., Kornev, N., Isaev, S., & Hassel, E. (2010). Vortex mechanism of heat transfer enhancement in a channel with spherical and oval dimples. Heat and Mass Transfer, 47(3): 301–313. doi:10.1007/s00231-010-0720-5
  • Huang, X., Yang, W., Ming, T., Shen, W., & Yu, X. (2017). Heat transfer enhancement on a microchannel heat sink with impinging jets and dimples. International Journal of Heat and Mass Transfer, 112: 113–124. doi:10.1016/j.ijheatmasstransfer.2017.04.078
  • Huang, Z., Yu, G. L., Li, Z. Y., & Tao, W. Q. (2015). Numerical Study on Heat Transfer Enhancement in a Receiver Tube of Parabolic Trough Solar Collector with Dimples, Protrusions and Helical Fins. Energy Procedia, 69: 1306–1316. doi:10.1016/j.egypro.2015.03.149
  • Xie, S., Liang, Z., Zhang, L., & Wang, Y. (2018). A numerical study on heat transfer enhancement and flow structure in an enhanced tube with cross ellipsoidal dimples. International Journal of Heat and Mass Transfer, 125: 434–444. doi:10.1016/j.ijheatmasstransfer.2018.04.106
  • Tijing, L. D., Pak, B. C., Baek, B. J., & Lee, D. H. (2006). A study on heat transfer enhancement using straight and twisted internal fin inserts. International Communications in Heat and Mass Transfer, 33(6): 719–726. doi:10.1016/j.icheatmasstransfer.2006.02.006
  • García, A., Vicente, P. G., & Viedma, A. (2005). Experimental study of heat transfer enhancement with wire coil inserts in laminar-transition-turbulent regimes at different Prandtl numbers. International Journal of Heat and Mass Transfer, 48(21-22): 4640–4651. doi:10.1016/j.ijheatmasstransfer.2005.04.024
  • Eiamsa-ard, S., Wongcharee, K., Eiamsa-ard, P., & Thianpong, C. (2010). Heat transfer enhancement in a tube using delta-winglet twisted tape inserts. Applied Thermal Engineering, 30(4): 310–318. doi:10.1016/j.applthermaleng.2009.09.006
  • Promvonge, P., & Eiamsa-ard, S. (2006). Heat transfer enhancement in a tube with combined conical-nozzle inserts and swirl generator. Energy Conversion and Management, 47(18-19): 2867–2882. doi:10.1016/j.enconman.2006.03.034
  • Firoozi, A., Majidi, S., & Ameri, M. (2020). A numerical assessment of heat transfer and flow characteristics of nanofluid in tubes enhanced with a variety of dimple configurations. Thermal Science and Engineering Progress, 100578. doi:10.1016/j.tsep.2020.100578
  • Akçay, S. (2021). Investigation of thermo-hydraulic performance of nanofluids in a zigzag channel with baffles. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 8 (15): 525-534.
  • Akçay, S. (2023). Numerical analysis of hydraulic and thermal performance of al2o3-water nanofluid in a zigzag channel with central winglets. Gazi University Journal of Science, 36(1): 383-397.
  • Vicente, P. G., Garcıa, A., & Viedma, A. (2002). Experimental study of mixed convection and pressure drop in helically dimpled tubes for laminar and transition flow. International Journal of Heat and Mass Transfer, 45(26): 5091–5105. doi:10.1016/s0017-9310(02)00215-6
  • Vicente, P. G., Garcıa, A., & Viedma, A. (2004). Mixed convection heat transfer and isothermal pressure drop in corrugated tubes for laminar and transition flow. International Communications in Heat and Mass Transfer, 31(5): 651–662. doi:10.1016/s0735-1933(04)00052-1
  • Zheng, N., Liu, P., Shan, F., Liu, Z., & Liu, W. (2017). Turbulent flow and heat transfer enhancement in a heat exchanger tube fitted with novel discrete inclined grooves. International Journal of Thermal Sciences, 111: 289–300. doi:10.1016/j.ijthermalsci.2016.09.010
  • Chen, J., Müller-Steinhagen, H., & Duffy, G. G. (2001). Heat transfer enhancement in dimpled tubes. Applied Thermal Engineering, 21(5): 535–547. doi:10.1016/s1359-4311(00)00067-3
  • Piper, M., Zibart, A., Djakow, E., Springer, R., Homberg, W., & Kenig, E. Y. (2019). Heat transfer enhancement in pillow-plate heat exchangers with dimpled surfaces: a numerical study. Applied Thermal Engineering, 153:142-146. doi:10.1016/j.applthermaleng.2019.02.082
  • Bi, C., Tang, G. H., & Tao, W. Q. (2013). Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves. Applied Thermal Engineering, 55(1-2): 121–132. doi:10.1016/j.applthermaleng.2013.03.007
  • Kabeel, A. E., Abou El Maaty, T., & El Samadony, Y. (2013). The effect of using nano-particles on corrugated plate heat exchanger performance. Applied Thermal Engineering, 52(1): 221–229. doi:10.1016/j.applthermaleng.2012.11.027
  • Khairul, M. A., Alim, M. A., Mahbubul, I. M., Saidur, R., Hepbasli, A., & Hossain, A. (2014). Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids. International Communications in Heat and Mass Transfer, 50: 8–14. doi:10.1016/j.icheatmasstransfer.2013.11.006
  • Suresh, S., Chandrasekar, M., & handra Sekhar, S. (2011). Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube. Experimental Thermal and Fluid Science, 35(3): 542–549. doi:10.1016/j.expthermflusci.2010.12.008
  • Ekiciler, R., & Samet Ali Çetinkaya, M. (2021). A comparative heat transfer study between monotype and hybrid nanofluid in a duct with various shapes of ribs. Thermal Science and Engineering Progress, 23: 100913. doi:10.1016/j.tsep.2021.100913
  • Toghraie, D., Chaharsoghi, V. A., & Afrand, M. (2016). Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. Journal of Thermal Analysis and Calorimetry, 125(1): 527–535. doi:10.1007/s10973-016-5436-4
  • Sundar, L. S., Singh, M. K., & Sousa, A. C. M. (2018). Turbulent heat transfer and friction factor of nanodiamond-nickel hybrid nanofluids flow in a tube: An experimental study. International Journal of Heat and Mass Transfer, 117: 223–234. doi:10.1016/j.ijheatmasstransfer.2017.09.109
  • Khan, A., & Ali, M. (2022). Thermo-hydraulic behavior of alumina/silica hybrid nanofluids through a straight minichannel heat sink. Case Studies in Thermal Engineering, 31: 101838. https://doi.org/10.1016/j.csite.2022.101838
  • Ahmed, F., Abir, M. A., Fuad, M., Akter, F., Bhowmik, P. K., Alam, S. B., & Kumar, D. (2021). Numerical investigation of the thermo‐hydraulic performance of water‐based nanofluids in a dimpled channel flow using Al2O3, CuO, and hybrid Al2O3–CuO as nanoparticles. Heat Transfer, 50(5): 5080–5105. doi:10.1002/htj.22116
  • Mertaslan, O. M., & Keklikcioglu, O. (2024). Investigating heat exchanger tube performance: second law efficiency analysis of a novel combination of two heat transfer enhancement techniques. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-023-12842-6
  • ANSYS, 2018. ANSYS Fluent Tutorial Guide, ANSYS Inc., Canonsburg. Gnielinski, V. (1976). New equations for heat and mass transfer in turbulent pipe and channel flow. International Chemical Engineering, 27; 359–368.
  • Petukhov, B. S., Irvine, T. F., & Hartnett, J. P. (1970). Advances in heat transfer. Academic, New York, 6; 503–564.
  • Webb, R. L. (1981). Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. International Journal of Heat and Mass Transfer, 24; 715–726.

Augmentation of thermohydraulic performance in a dimpled tube using ternary hybrid nanofluid

Year 2024, , 38 - 46, 20.03.2024
https://doi.org/10.26701/ems.1428860

Abstract

This computational study explores the thermal and hydraulic efficiency of heat exchanger tube configurations utilizing hybrid nanofluids and circular dimples. Seven distinct configurations incorporating different volumetric concentrations of three nanoparticles (GnP, MWCNT, and Fe3O4) and two circular dimple pitch ratios are examined. The investigation concentrates on crucial parameters, including Nusselt number, friction factor, and thermohydraulic performance. The numerical analysis specifically addresses single-phase flow within the Reynolds number range of 5000-30000, maintaining a constant surface heat flux during simulations. Notably, Nusselt number consistently rises with Reynolds number across all configurations. Friction factor analysis indicates minimal sensitivity to hybrid nanofluid ratios but an increase with circular dimples. Despite the elevated pressure drop, the thermohydraulic coefficient consistently surpasses 1, signifying a net energy gain from enhanced heat transfer. Optimal performance is observed in the S5-P/Dt=1 configuration, exhibiting the highest thermohydraulic coefficient at 1.35, while the P/Dt =2 variation within the same fluid model presents a slightly lower value of 1.32.

Ethical Statement

No potential conflict of interest was declared by the authors

References

  • Shanthi, R., Anandan, S., & Ramalingam, V. (2012). Heat transfer enhancement using nanofluids: An overview. Thermal Science, 16(2): 423–444. doi:10.2298/tsci110201003s
  • Gürdal, M., Pazarlıoğlu, H. K., Tekir, M., Arslan, K., & Gedik, E. (2022). Numerical investigation on turbulent flow and heat transfer characteristics of Ferro-nanofluid flowing in dimpled tube under magnetic field effect. Applied Thermal Engineering, 200: 117655. https://doi.org/10.1016/j.applthermaleng.2021.117655
  • Dewan, A., Mahanta, P., Raju, K. S., & Kumar, P. S. (2004). Review of passive heat transfer augmentation techniques. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 218(7): 509–527. doi:10.1243/0957650042456953
  • Sheikholeslami, M., Gorji-Bandpy, M., & Ganji, D. D. (2015). Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices. Renewable and Sustainable Energy Reviews, 49: 444–469. doi:10.1016/j.rser.2015.04.113
  • Léal, L., Miscevic, M., Lavieille, P., Amokrane, M., Pigache, F., Topin, F., … Tadrist, L. (2013). An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials. International Journal of Heat and Mass Transfer, 61:505-524. doi:10.1016/j.ijheatmasstransfer.2013.01.083
  • Mousavi Ajarostaghi, S. S., Zaboli, M., Javadi, H., Badenes, B., & Urchueguia, J. F. (2022). A review of recent passive heat transfer enhancement methods. Energies, 15(3): 986. https://doi.org/10.3390/en15030986
  • Kiwan, S., & Al-Nimr, M. A. (2001). Using Porous Fins for Heat Transfer Enhancement. Journal of Heat Transfer, 123(4), 790. doi:10.1115/1.1371922
  • Pavel, B. I., & Mohamad, A. A. (2004). An experimental and numerical study on heat transfer enhancement for gas heat exchangers fitted with porous media. International Journal of Heat and Mass Transfer, 47(23): 4939–4952. doi:10.1016/j.ijheatmasstransfer.2004.06.014
  • Wang, B., Hong, Y., Hou, X., Xu, Z., Wang, P., Fang, X., & Ruan, X. (2015). Numerical configuration design and investigation of heat transfer enhancement in pipes filled with gradient porous materials. Energy Conversion and Management, 105: 206–215. doi:10.1016/j.enconman.2015.07.064
  • Pethkool, S., Eiamsa-ard, S., Kwankaomeng, S., & Promvonge, P. (2011). Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube. International Communications in Heat and Mass Transfer, 38(3): 340–347. doi:10.1016/j.icheatmasstransfer.2010.11.014
  • Kareem, Z. S., Mohd Jaafar, M. N., Lazim, T. M., Abdullah, S., & AbdulWahid, A. F. (2015). Heat transfer enhancement in two-start spirally corrugated tube. Alexandria Engineering Journal, 54(3): 415–422. doi:10.1016/j.aej.2015.04.001
  • Kareem, Z. S., Mohd Jaafar, M. N., Lazim, T. M., Abdullah, S., & Abdulwahid, A. F. (2015). Passive heat transfer enhancement review in corrugation. Experimental Thermal and Fluid Science, 68: 22–38. doi:10.1016/j.expthermflusci.2015.04.012
  • Kareem, Z. S., Abdullah, S., Lazim, T. M., Mohd Jaafar, M. N., & Abdul Wahid, A. F. (2015). Heat transfer enhancement in three-start spirally corrugated tube: Experimental and numerical study. Chemical Engineering Science, 134: 746.
  • Nuntaphan, A., Vithayasai, S., Vorayos, N., Vorayos, N., & Kiatsiriroat, T. (2010). Use of oscillating heat pipe technique as an extended surface in wire-on-tube heat exchanger for heat transfer enhancement. International Communications in Heat and Mass Transfer, 37(3): 287–292. doi:10.1016/j.icheatmasstransfer.2009.11.006
  • Nagarani, N., Mayilsamy, K., Murugesan, A., & Kumar, G. S. (2014). Review of the utilization of extended surfaces in heat transfer problems. Renewable and Sustainable Energy Reviews, 29: 604–613. doi:10.1016/j.rser.2013.08.068
  • Yadav, V., Baghel, K., Kumar, R., & Kadam, S. T. (2016). Numerical investigation of heat transfer in extended surface microchannels. International Journal of Heat and Mass Transfer, 93: 612–622. doi:10.1016/j.ijheatmasstransfer.2015.10.023
  • Bi, C., Tang, G. H., & Tao, W. Q. (2013). Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves. Applied Thermal Engineering, 55(1-2): 121–132. doi:10.1016/j.applthermaleng.2013.03.007
  • Turnow, J., Kornev, N., Isaev, S., & Hassel, E. (2010). Vortex mechanism of heat transfer enhancement in a channel with spherical and oval dimples. Heat and Mass Transfer, 47(3): 301–313. doi:10.1007/s00231-010-0720-5
  • Huang, X., Yang, W., Ming, T., Shen, W., & Yu, X. (2017). Heat transfer enhancement on a microchannel heat sink with impinging jets and dimples. International Journal of Heat and Mass Transfer, 112: 113–124. doi:10.1016/j.ijheatmasstransfer.2017.04.078
  • Huang, Z., Yu, G. L., Li, Z. Y., & Tao, W. Q. (2015). Numerical Study on Heat Transfer Enhancement in a Receiver Tube of Parabolic Trough Solar Collector with Dimples, Protrusions and Helical Fins. Energy Procedia, 69: 1306–1316. doi:10.1016/j.egypro.2015.03.149
  • Xie, S., Liang, Z., Zhang, L., & Wang, Y. (2018). A numerical study on heat transfer enhancement and flow structure in an enhanced tube with cross ellipsoidal dimples. International Journal of Heat and Mass Transfer, 125: 434–444. doi:10.1016/j.ijheatmasstransfer.2018.04.106
  • Tijing, L. D., Pak, B. C., Baek, B. J., & Lee, D. H. (2006). A study on heat transfer enhancement using straight and twisted internal fin inserts. International Communications in Heat and Mass Transfer, 33(6): 719–726. doi:10.1016/j.icheatmasstransfer.2006.02.006
  • García, A., Vicente, P. G., & Viedma, A. (2005). Experimental study of heat transfer enhancement with wire coil inserts in laminar-transition-turbulent regimes at different Prandtl numbers. International Journal of Heat and Mass Transfer, 48(21-22): 4640–4651. doi:10.1016/j.ijheatmasstransfer.2005.04.024
  • Eiamsa-ard, S., Wongcharee, K., Eiamsa-ard, P., & Thianpong, C. (2010). Heat transfer enhancement in a tube using delta-winglet twisted tape inserts. Applied Thermal Engineering, 30(4): 310–318. doi:10.1016/j.applthermaleng.2009.09.006
  • Promvonge, P., & Eiamsa-ard, S. (2006). Heat transfer enhancement in a tube with combined conical-nozzle inserts and swirl generator. Energy Conversion and Management, 47(18-19): 2867–2882. doi:10.1016/j.enconman.2006.03.034
  • Firoozi, A., Majidi, S., & Ameri, M. (2020). A numerical assessment of heat transfer and flow characteristics of nanofluid in tubes enhanced with a variety of dimple configurations. Thermal Science and Engineering Progress, 100578. doi:10.1016/j.tsep.2020.100578
  • Akçay, S. (2021). Investigation of thermo-hydraulic performance of nanofluids in a zigzag channel with baffles. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 8 (15): 525-534.
  • Akçay, S. (2023). Numerical analysis of hydraulic and thermal performance of al2o3-water nanofluid in a zigzag channel with central winglets. Gazi University Journal of Science, 36(1): 383-397.
  • Vicente, P. G., Garcıa, A., & Viedma, A. (2002). Experimental study of mixed convection and pressure drop in helically dimpled tubes for laminar and transition flow. International Journal of Heat and Mass Transfer, 45(26): 5091–5105. doi:10.1016/s0017-9310(02)00215-6
  • Vicente, P. G., Garcıa, A., & Viedma, A. (2004). Mixed convection heat transfer and isothermal pressure drop in corrugated tubes for laminar and transition flow. International Communications in Heat and Mass Transfer, 31(5): 651–662. doi:10.1016/s0735-1933(04)00052-1
  • Zheng, N., Liu, P., Shan, F., Liu, Z., & Liu, W. (2017). Turbulent flow and heat transfer enhancement in a heat exchanger tube fitted with novel discrete inclined grooves. International Journal of Thermal Sciences, 111: 289–300. doi:10.1016/j.ijthermalsci.2016.09.010
  • Chen, J., Müller-Steinhagen, H., & Duffy, G. G. (2001). Heat transfer enhancement in dimpled tubes. Applied Thermal Engineering, 21(5): 535–547. doi:10.1016/s1359-4311(00)00067-3
  • Piper, M., Zibart, A., Djakow, E., Springer, R., Homberg, W., & Kenig, E. Y. (2019). Heat transfer enhancement in pillow-plate heat exchangers with dimpled surfaces: a numerical study. Applied Thermal Engineering, 153:142-146. doi:10.1016/j.applthermaleng.2019.02.082
  • Bi, C., Tang, G. H., & Tao, W. Q. (2013). Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves. Applied Thermal Engineering, 55(1-2): 121–132. doi:10.1016/j.applthermaleng.2013.03.007
  • Kabeel, A. E., Abou El Maaty, T., & El Samadony, Y. (2013). The effect of using nano-particles on corrugated plate heat exchanger performance. Applied Thermal Engineering, 52(1): 221–229. doi:10.1016/j.applthermaleng.2012.11.027
  • Khairul, M. A., Alim, M. A., Mahbubul, I. M., Saidur, R., Hepbasli, A., & Hossain, A. (2014). Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids. International Communications in Heat and Mass Transfer, 50: 8–14. doi:10.1016/j.icheatmasstransfer.2013.11.006
  • Suresh, S., Chandrasekar, M., & handra Sekhar, S. (2011). Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube. Experimental Thermal and Fluid Science, 35(3): 542–549. doi:10.1016/j.expthermflusci.2010.12.008
  • Ekiciler, R., & Samet Ali Çetinkaya, M. (2021). A comparative heat transfer study between monotype and hybrid nanofluid in a duct with various shapes of ribs. Thermal Science and Engineering Progress, 23: 100913. doi:10.1016/j.tsep.2021.100913
  • Toghraie, D., Chaharsoghi, V. A., & Afrand, M. (2016). Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. Journal of Thermal Analysis and Calorimetry, 125(1): 527–535. doi:10.1007/s10973-016-5436-4
  • Sundar, L. S., Singh, M. K., & Sousa, A. C. M. (2018). Turbulent heat transfer and friction factor of nanodiamond-nickel hybrid nanofluids flow in a tube: An experimental study. International Journal of Heat and Mass Transfer, 117: 223–234. doi:10.1016/j.ijheatmasstransfer.2017.09.109
  • Khan, A., & Ali, M. (2022). Thermo-hydraulic behavior of alumina/silica hybrid nanofluids through a straight minichannel heat sink. Case Studies in Thermal Engineering, 31: 101838. https://doi.org/10.1016/j.csite.2022.101838
  • Ahmed, F., Abir, M. A., Fuad, M., Akter, F., Bhowmik, P. K., Alam, S. B., & Kumar, D. (2021). Numerical investigation of the thermo‐hydraulic performance of water‐based nanofluids in a dimpled channel flow using Al2O3, CuO, and hybrid Al2O3–CuO as nanoparticles. Heat Transfer, 50(5): 5080–5105. doi:10.1002/htj.22116
  • Mertaslan, O. M., & Keklikcioglu, O. (2024). Investigating heat exchanger tube performance: second law efficiency analysis of a novel combination of two heat transfer enhancement techniques. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-023-12842-6
  • ANSYS, 2018. ANSYS Fluent Tutorial Guide, ANSYS Inc., Canonsburg. Gnielinski, V. (1976). New equations for heat and mass transfer in turbulent pipe and channel flow. International Chemical Engineering, 27; 359–368.
  • Petukhov, B. S., Irvine, T. F., & Hartnett, J. P. (1970). Advances in heat transfer. Academic, New York, 6; 503–564.
  • Webb, R. L. (1981). Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. International Journal of Heat and Mass Transfer, 24; 715–726.
There are 46 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Orhan Keklikcioğlu 0000-0002-6227-3130

Early Pub Date March 20, 2024
Publication Date March 20, 2024
Submission Date January 31, 2024
Acceptance Date February 18, 2024
Published in Issue Year 2024

Cite

APA Keklikcioğlu, O. (2024). Augmentation of thermohydraulic performance in a dimpled tube using ternary hybrid nanofluid. European Mechanical Science, 8(1), 38-46. https://doi.org/10.26701/ems.1428860

Dergi TR Dizin'de Taranmaktadır.

Flag Counter