Due to the high energy consumption of refrigerated display cabinets used in supermarkets, a life cycle cooling performance analysis to increase energy efficiency and reduce environmental impacts is the main subject of this study. It also emphasizes the need for cabinets that consume less energy and provide environmentally friendly working conditions. The Life Cycle Climate Performance (LCCP) of the two refrigerants R290 and R449-A was evaluated using measured data to compare the environmental impact of the refrigerants over the entire fluid and equipment life cycle, including energy consumption. Both vapor-compressed cooling cycles were thermodynamically modeled with the parameters taken from the experiments and the efficiency of system was calculated by using the EES software. The results show that the cabinet using R290 has lower compressor power utilization. The COP of the R290 system increased by 13% compared to the R449A system. The total daily energy consumption was also significantly lower for the R290 system. The energy efficiency index provides a standardized metric that can be used to compare the performance of different cooling systems. In this study, the energy efficiency index value was 17.3 points lower for the R290 system, indicating higher energy efficiency. The energy classes are “E” for the R449-A system and “C” for the R290 system, with the R290 system two classes higher in terms of energy class labeling. The EEI value of the system with R290 refrigerant has been reduced by 33% in comparison with the system with R449A refrigerant. The system using R290 refrigerant achieved a 33% reduction in energy consumption compared to the system using R449A refrigerant. The study also assessed the life cycle climate performance of the two systems. It was found that the R449-A system emits 19032.45 kg CO2e more over its lifetime compared to the R290 system. This was attributed to the relatively high global warming potential and energy consumption of R449-A refrigerant. However, when considering safety (flammability), it was concluded that R-449A has a lower environmental impact than R-290.
Rivers, N. (2005). Management of energy usage in a supermarket refrigeration systems. The Institute of Refrigeration.
James, S., & James, C. (2010). The food cold-chain and climate change. Food Research International, 43(7), 1944-1956. https://doi.org/10.1016/j.foodres.2010.02.001
Tassou, S., Ge, Y., Hadawey, A., & Marriott, D. (2011). Energy consumption and conservation in food retailing. Applied Thermal Engineering, 31(2-3), 147-156. https://doi.org/10.1016/j.applthermaleng.2010.08.023
Benhadid-Dib, S., & Benzaoui, A. (2012). Refrigerants and their Environmental Impact Substitution of Hydro Chlorofluorocarbon HCFC and HFC Hydro Fluorocarbon. Search for an Adequate Refrigerant. Energy Procedia, 18, 807-816. https://doi.org/10.1016/j.egypro.2012.05.096
Velders, G. J., Fahey, D. W., Daniel, J. S., Andersen, S. O., & McFarland, M. (2015). Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions. Atmospheric Environment, 123, 200-209. https://doi.org/10.1016/j.atmosenv.2015.10.071
Koronaki, I., Cowan, D., Maidment, G., Beerman, K., Schreurs, M., Kaar, K., Chaer, I., Gontarz, G., Christodoulaki, R., & Cazauran, X. (2012). Refrigerant emissions and leakage prevention across Europe–Results from the RealSkillsEurope project. Energy, 45(1), 71-80. https://doi.org/10.1016/j.energy.2012.05.040
Heredia-Aricapa, Y., Belman-Flores, J., Mota-Babiloni, A., Serrano-Arellano, J., & García-Pabón, J. J. (2020). Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A. International Journal of Refrigeration, 111, 113-123. https://doi.org/10.1016/j.ijrefrig.2019.11.012
Ciconkov, R. (2018). Refrigerants: There is still no vision for sustainable solutions. International Journal of Refrigeration, 86, 441-448. https://doi.org/10.1016/j.ijrefrig.2017.12.006
Lommers, C., Airah, F., & Ashrae, M. (2003). Air conditioning and refrigeration industry refrigerant selection guide. Report AIRAH.
Sruthi Emani, M., & Kumar Mandal, B. (2018). The use of natural refrigerants in refrigeration and air conditioning systems: A review. IOP Conference Series: Materials Science and Engineering, 377, 012084. https://doi.org/10.1088/1757-899X/377/1/012064
Ardhapurkar, P., Sridharan, A., & Atrey, M. (2014). Experimental investigation on temperature profile and pressure drop in two-phase heat exchanger for mixed refrigerant Joule–Thomson cryocooler. Applied Thermal Engineering, 66(1-2), 94-103. https://doi.org/10.1016/j.applthermaleng.2014.01.067
Palm, B. (2008). Hydrocarbons as refrigerants in small heat pump and refrigeration systems–a review. International Journal of Refrigeration, 31(4), 552-563. https://doi.org/10.1016/j.ijrefrig.2007.11.016
Ramesh, K. N., Sharma, T. K., & Rao, G. A. P. (2021). Latest advancements in heat transfer enhancement in the micro-channel heat sinks: A review. Archives of Computational Methods in Engineering, 28, 3135-3165. https://doi.org/10.1007/s11831-020-09495-1
Xia, L., & Chan, Y. (2015). Investigation of the enhancement effect of heat transfer using micro channel. Energy Procedia, 75, 912-918. https://doi.org/10.1016/j.egypro.2015.07.234
Spizzichino, M., Sinibaldi, G., & Romano, G. (2020). Experimental investigation on fluid mechanics of micro-channel heat transfer devices. Experimental Thermal and Fluid Science, 118, 110141. https://doi.org/10.1016/j.expthermflusci.2020.110141
Makhnatch, P., & Khodabandeh, R. (2014). The role of environmental metrics (GWP, TEWI, LCCP) in the selection of low GWP refrigerant. Energy Procedia, 61, 2460-2463. https://doi.org/10.1016/j.egypro.2014.12.023
Ghanbarpour, M., Mota-Babiloni, A., Makhnatch, P., Badran, B. E., Rogstam, J., & Khodabandeh, R. (2021). ANN modeling to analyze the R404A replacement with the low GWP alternative R449A in an indirect supermarket refrigeration system. Applied Sciences, 11(23), 11333. https://doi.org/10.3390/app112311333
Llopis, R., Calleja-Anta, D., Sánchez, D., Nebot-Andrés, L., Catalán-Gil, J., & Cabello, R. (2019). R-454C, R-459B, R-457A and R-455A as low-GWP replacements of R-404A: Experimental evaluation and optimization. International Journal of Refrigeration, 106, 133-143. https://doi.org/10.1016/j.ijrefrig.2019.06.013
Makhnatch, P., Mota-Babiloni, A., Rogstam, J., & Khodabandeh, R. (2017). Retrofit of lower GWP alternative R449A into an existing R404A indirect supermarket refrigeration system. International Journal of Refrigeration, 76, 184-192. https://doi.org/10.1016/j.ijrefrig.2017.02.009
Ceglia, F., Marrasso, E., Roselli, C., & Sasso, M. (2021). An innovative environmental parameter: Expanded total equivalent warming impact. International Journal of Refrigeration, 131, 980-989. https://doi.org/10.1016/j.ijrefrig.2021.08.019
Mota-Babiloni, A., Navarro-Esbrí, J., Barragán-Cervera, Á., Molés, F., & Peris, B. (2015). Analysis based on EU Regulation No 517/2014 of new HFC/HFO mixtures as alternatives of high GWP refrigerants in refrigeration and HVAC systems. International Journal of Refrigeration, 52, 21-31. https://doi.org/10.1016/j.ijrefrig.2014.12.021
Fabris, F., Fabrizio, M., Marinetti, S., Rossetti, A., & Minetto, S. (2024). Evaluation of the carbon footprint of HFC and natural refrigerant transport refrigeration units from a life-cycle perspective. International Journal of Refrigeration, 159, 17-27. https://doi.org/10.1016/j.ijrefrig.2023.12.018
Troch, S. Lee, H. Hwang, Y. & Radermacher, R. (2016). Harmonization of Life Cycle Climate Performance (LCCP) Methodology. International Refrigeration and Air Conditioning Conference. Paper 1724. http://docs.lib.purdue.edu/iracc/1724
Beshr, M., Aute, V., Sharma, V., Abdelaziz, O., Fricke, B., & Radermacher, R. (2015). A comparative study on the environmental impact of supermarket refrigeration systems using low GWP refrigerants. International Journal of Refrigeration, 56, 154-164. https://doi.org/10.1016/j.ijrefrig.2015.03.025
Lee, H., Troch, S., Hwang, Y., & Radermacher, R. (2016). LCCP evaluation on various vapor compression cycle options and low GWP refrigerants. International Journal of Refrigeration, 70, 128-137. https://doi.org/10.1016/j.ijrefrig.2016.07.003
Choi, S., Jung, Y., Kim, Y., Lee, H., & Hwang, Y. (2021). Environmental effect evaluation of refrigerator cycle with life cycle climate performance. International Journal of Refrigeration, 122, 134-146. https://doi.org/10.1016/j.ijrefrig.2020.10.032
Wan, H., Cao, T., Hwang, Y., Radermacher, R., Andersen, S. O., & Chin, S. (2021). A comprehensive review of life cycle climate performance (LCCP) for air conditioning systems. International Journal of Refrigeration, 130, 187-198. https://doi.org/10.1016/j.ijrefrig.2021.06.026
Choi, S., Oh, J., Hwang, Y., & Lee, H. (2017). Life cycle climate performance evaluation (LCCP) on cooling and heating systems in South Korea. Applied Thermal Engineering, 120, 88-98. https://doi.org/10.1016/j.applthermaleng.2017.03.105
Li, G. (2017). Comprehensive investigation of transport refrigeration life cycle climate performance. Sustainable Energy Technologies and Assessments, 21, 33-49. https://doi.org/10.1016/j.seta.2017.04.002
Mota-Babiloni, A., Barbosa Jr, J. R., Makhnatch, P., & Lozano, J. A. (2020). Assessment of the utilization of equivalent warming impact metrics in refrigeration, air conditioning and heat pump systems. Renewable and Sustainable Energy Reviews, 129, 109929. https://doi.org/10.1016/j.rser.2020.109929
Rossi, M., Favi, C., Germani, M., & Omicioli, M. (2021). Comparative life cycle assessment of refrigeration systems for food cooling: Eco-design actions towards machines with natural refrigerants. International Journal of Sustainable Engineering, 14(6), 1623-1646. https://doi.org/10.1080/19397038.2021.1970274
Hwang, Y., Ferreira, C., & Piao, C. (2015). Guideline for life cycle climate performance. International Institute of Refrigeration, Paris.
Tsamos, K. M., Mroue, H., Sun, J., Tassou, S. A., Nicholls, N., & Smith, G. (2019). Energy savings potential in using cold-shelves innovation for multi-deck open front refrigerated cabinets. Energy Procedia, 161, 292-299. https://doi.org/10.1016/j.egypro.2019.02.094
Öder, M., Demirpolat, H., Erdoğmuş, F. N., & Erten, S. (2022). Development of deflector structure and effects on performance: Refrigerated display cabinet application. The European Journal of Research and Development, 2(4), 155-168.
Geilinger, E., Janssen, M., Pedersen, P. H., Huggins, P., & Bush, E. (2017). Best available technology of plug-in refrigerated cabinets, beverage coolers and ice cream freezers and the challenges of measuring and comparing energy efficiency. The Carbon Trust, Topten International Services.
Bulk, A., Faramarzi, R., Shoukas, G., Ghatpande, O., & Labarge, S. (2022). Performance assessment of high-efficiency refrigerated display cases with low-GWP refrigerants. The Carbon Trust, Topten International Services.
Rivers, N. (2005). Management of energy usage in a supermarket refrigeration systems. The Institute of Refrigeration.
James, S., & James, C. (2010). The food cold-chain and climate change. Food Research International, 43(7), 1944-1956. https://doi.org/10.1016/j.foodres.2010.02.001
Tassou, S., Ge, Y., Hadawey, A., & Marriott, D. (2011). Energy consumption and conservation in food retailing. Applied Thermal Engineering, 31(2-3), 147-156. https://doi.org/10.1016/j.applthermaleng.2010.08.023
Benhadid-Dib, S., & Benzaoui, A. (2012). Refrigerants and their Environmental Impact Substitution of Hydro Chlorofluorocarbon HCFC and HFC Hydro Fluorocarbon. Search for an Adequate Refrigerant. Energy Procedia, 18, 807-816. https://doi.org/10.1016/j.egypro.2012.05.096
Velders, G. J., Fahey, D. W., Daniel, J. S., Andersen, S. O., & McFarland, M. (2015). Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions. Atmospheric Environment, 123, 200-209. https://doi.org/10.1016/j.atmosenv.2015.10.071
Koronaki, I., Cowan, D., Maidment, G., Beerman, K., Schreurs, M., Kaar, K., Chaer, I., Gontarz, G., Christodoulaki, R., & Cazauran, X. (2012). Refrigerant emissions and leakage prevention across Europe–Results from the RealSkillsEurope project. Energy, 45(1), 71-80. https://doi.org/10.1016/j.energy.2012.05.040
Heredia-Aricapa, Y., Belman-Flores, J., Mota-Babiloni, A., Serrano-Arellano, J., & García-Pabón, J. J. (2020). Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A. International Journal of Refrigeration, 111, 113-123. https://doi.org/10.1016/j.ijrefrig.2019.11.012
Ciconkov, R. (2018). Refrigerants: There is still no vision for sustainable solutions. International Journal of Refrigeration, 86, 441-448. https://doi.org/10.1016/j.ijrefrig.2017.12.006
Lommers, C., Airah, F., & Ashrae, M. (2003). Air conditioning and refrigeration industry refrigerant selection guide. Report AIRAH.
Sruthi Emani, M., & Kumar Mandal, B. (2018). The use of natural refrigerants in refrigeration and air conditioning systems: A review. IOP Conference Series: Materials Science and Engineering, 377, 012084. https://doi.org/10.1088/1757-899X/377/1/012064
Ardhapurkar, P., Sridharan, A., & Atrey, M. (2014). Experimental investigation on temperature profile and pressure drop in two-phase heat exchanger for mixed refrigerant Joule–Thomson cryocooler. Applied Thermal Engineering, 66(1-2), 94-103. https://doi.org/10.1016/j.applthermaleng.2014.01.067
Palm, B. (2008). Hydrocarbons as refrigerants in small heat pump and refrigeration systems–a review. International Journal of Refrigeration, 31(4), 552-563. https://doi.org/10.1016/j.ijrefrig.2007.11.016
Ramesh, K. N., Sharma, T. K., & Rao, G. A. P. (2021). Latest advancements in heat transfer enhancement in the micro-channel heat sinks: A review. Archives of Computational Methods in Engineering, 28, 3135-3165. https://doi.org/10.1007/s11831-020-09495-1
Xia, L., & Chan, Y. (2015). Investigation of the enhancement effect of heat transfer using micro channel. Energy Procedia, 75, 912-918. https://doi.org/10.1016/j.egypro.2015.07.234
Spizzichino, M., Sinibaldi, G., & Romano, G. (2020). Experimental investigation on fluid mechanics of micro-channel heat transfer devices. Experimental Thermal and Fluid Science, 118, 110141. https://doi.org/10.1016/j.expthermflusci.2020.110141
Makhnatch, P., & Khodabandeh, R. (2014). The role of environmental metrics (GWP, TEWI, LCCP) in the selection of low GWP refrigerant. Energy Procedia, 61, 2460-2463. https://doi.org/10.1016/j.egypro.2014.12.023
Ghanbarpour, M., Mota-Babiloni, A., Makhnatch, P., Badran, B. E., Rogstam, J., & Khodabandeh, R. (2021). ANN modeling to analyze the R404A replacement with the low GWP alternative R449A in an indirect supermarket refrigeration system. Applied Sciences, 11(23), 11333. https://doi.org/10.3390/app112311333
Llopis, R., Calleja-Anta, D., Sánchez, D., Nebot-Andrés, L., Catalán-Gil, J., & Cabello, R. (2019). R-454C, R-459B, R-457A and R-455A as low-GWP replacements of R-404A: Experimental evaluation and optimization. International Journal of Refrigeration, 106, 133-143. https://doi.org/10.1016/j.ijrefrig.2019.06.013
Makhnatch, P., Mota-Babiloni, A., Rogstam, J., & Khodabandeh, R. (2017). Retrofit of lower GWP alternative R449A into an existing R404A indirect supermarket refrigeration system. International Journal of Refrigeration, 76, 184-192. https://doi.org/10.1016/j.ijrefrig.2017.02.009
Ceglia, F., Marrasso, E., Roselli, C., & Sasso, M. (2021). An innovative environmental parameter: Expanded total equivalent warming impact. International Journal of Refrigeration, 131, 980-989. https://doi.org/10.1016/j.ijrefrig.2021.08.019
Mota-Babiloni, A., Navarro-Esbrí, J., Barragán-Cervera, Á., Molés, F., & Peris, B. (2015). Analysis based on EU Regulation No 517/2014 of new HFC/HFO mixtures as alternatives of high GWP refrigerants in refrigeration and HVAC systems. International Journal of Refrigeration, 52, 21-31. https://doi.org/10.1016/j.ijrefrig.2014.12.021
Fabris, F., Fabrizio, M., Marinetti, S., Rossetti, A., & Minetto, S. (2024). Evaluation of the carbon footprint of HFC and natural refrigerant transport refrigeration units from a life-cycle perspective. International Journal of Refrigeration, 159, 17-27. https://doi.org/10.1016/j.ijrefrig.2023.12.018
Troch, S. Lee, H. Hwang, Y. & Radermacher, R. (2016). Harmonization of Life Cycle Climate Performance (LCCP) Methodology. International Refrigeration and Air Conditioning Conference. Paper 1724. http://docs.lib.purdue.edu/iracc/1724
Beshr, M., Aute, V., Sharma, V., Abdelaziz, O., Fricke, B., & Radermacher, R. (2015). A comparative study on the environmental impact of supermarket refrigeration systems using low GWP refrigerants. International Journal of Refrigeration, 56, 154-164. https://doi.org/10.1016/j.ijrefrig.2015.03.025
Lee, H., Troch, S., Hwang, Y., & Radermacher, R. (2016). LCCP evaluation on various vapor compression cycle options and low GWP refrigerants. International Journal of Refrigeration, 70, 128-137. https://doi.org/10.1016/j.ijrefrig.2016.07.003
Choi, S., Jung, Y., Kim, Y., Lee, H., & Hwang, Y. (2021). Environmental effect evaluation of refrigerator cycle with life cycle climate performance. International Journal of Refrigeration, 122, 134-146. https://doi.org/10.1016/j.ijrefrig.2020.10.032
Wan, H., Cao, T., Hwang, Y., Radermacher, R., Andersen, S. O., & Chin, S. (2021). A comprehensive review of life cycle climate performance (LCCP) for air conditioning systems. International Journal of Refrigeration, 130, 187-198. https://doi.org/10.1016/j.ijrefrig.2021.06.026
Choi, S., Oh, J., Hwang, Y., & Lee, H. (2017). Life cycle climate performance evaluation (LCCP) on cooling and heating systems in South Korea. Applied Thermal Engineering, 120, 88-98. https://doi.org/10.1016/j.applthermaleng.2017.03.105
Li, G. (2017). Comprehensive investigation of transport refrigeration life cycle climate performance. Sustainable Energy Technologies and Assessments, 21, 33-49. https://doi.org/10.1016/j.seta.2017.04.002
Mota-Babiloni, A., Barbosa Jr, J. R., Makhnatch, P., & Lozano, J. A. (2020). Assessment of the utilization of equivalent warming impact metrics in refrigeration, air conditioning and heat pump systems. Renewable and Sustainable Energy Reviews, 129, 109929. https://doi.org/10.1016/j.rser.2020.109929
Rossi, M., Favi, C., Germani, M., & Omicioli, M. (2021). Comparative life cycle assessment of refrigeration systems for food cooling: Eco-design actions towards machines with natural refrigerants. International Journal of Sustainable Engineering, 14(6), 1623-1646. https://doi.org/10.1080/19397038.2021.1970274
Hwang, Y., Ferreira, C., & Piao, C. (2015). Guideline for life cycle climate performance. International Institute of Refrigeration, Paris.
Tsamos, K. M., Mroue, H., Sun, J., Tassou, S. A., Nicholls, N., & Smith, G. (2019). Energy savings potential in using cold-shelves innovation for multi-deck open front refrigerated cabinets. Energy Procedia, 161, 292-299. https://doi.org/10.1016/j.egypro.2019.02.094
Öder, M., Demirpolat, H., Erdoğmuş, F. N., & Erten, S. (2022). Development of deflector structure and effects on performance: Refrigerated display cabinet application. The European Journal of Research and Development, 2(4), 155-168.
Geilinger, E., Janssen, M., Pedersen, P. H., Huggins, P., & Bush, E. (2017). Best available technology of plug-in refrigerated cabinets, beverage coolers and ice cream freezers and the challenges of measuring and comparing energy efficiency. The Carbon Trust, Topten International Services.
Bulk, A., Faramarzi, R., Shoukas, G., Ghatpande, O., & Labarge, S. (2022). Performance assessment of high-efficiency refrigerated display cases with low-GWP refrigerants. The Carbon Trust, Topten International Services.
Demirpolat, H., Erten, S., Ataş, Ş., Aktaş, M., vd. (2024). Comparison of the impact of R449-A and R290 on refrigerated display cabinets using life-cycle climate performance method. European Mechanical Science, 8(3), 125-136. https://doi.org/10.26701/ems.1493164