Year 2025,
Volume: 9 Issue: 4, 335 - 344, 28.12.2025
Serra Ersoy
,
Figen Kaya
,
Cengiz Kaya
References
-
Rajaboopathi, S., Thambidurai, S.: Synthesis of bio-surfactant based Ag/ZnO nanoparticles for better thermal, photocatalytic and antibacterial activity. Materials Chemistry and Physics (2019). https://doi.org/10.1016/j.matchemphys.2018.11.034
-
Duo, S., Zhang, L., Zhong, R., Liu, Z., Huang, L., Liu, T., Zhang, Y.: Controllable tartaric acid modified ZnO crystals and their modification−determined optical, superhydrophilic/hydrophilic and photocatalytic properties. Journal of Alloys and Compounds (2018). https://doi.org/10.1016/j.jallcom.2018.07.195
-
Abed, C., Ali, M.B., Addad, A., Elhouichet, H.: Growth, structural and optical properties of ZnO-ZnMgO-MgO nanocomposites and their photocatalytic activity under sunlight irradiation. Materials Research Bulletin 110, 230–238 (2019)
-
Cho, J., Lin, Q., Yang, S., Simmons, J.G., Cheng, Y., Lin, E., Yang, J., Foreman, J.V., Everitt, H.O., Yang, W., Kim, J., Liu, J.: Sulfur-doped zinc oxide (ZnO) Nanostars: Synthesis and simulation of growth mechanism. Nano Res. (2012). https://doi.org/10.1007/s12274-011-0180-3
-
Ba-Abbad, M.M., Kadhum, A.A.H., Bakar Mohamad, A., Takriff, M.S., Sopian, K.: The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol–gel technique. Journal of Alloys and Compounds (2013). https://doi.org/10.1016/j.jallcom.2012.09.076
-
Kumar, A.: Sol gel synthesis of zinc oxide nanoparticles and their application as nano-composite electrode material for supercapacitor. Journal of Molecular Structure (2020). https://doi.org/10.1016/j.molstruc.2020.128654
-
Pallavolu, M.R., Nallapureddy, J., Nallapureddy, R.R., Neelima, G., Yedluri, A.K., Mandal, T.K., Pejjai, B., Joo, S.W.: Self-assembled and highly faceted growth of Mo and V doped ZnO nanoflowers for high-performance supercapacitors. Journal of Alloys and Compounds (2021). https://doi.org/10.1016/j.jallcom.2021.161234
-
Biji, M., Irfana, M.I., Sreejamol, S., Shajesh, P., Ananthakumar, S., Mangalaraja, R.V., Anas, S.: Tartaric Acid Mediated Gelation Synthesis of Zinc Oxide Nanoparticles and their Photocatalytic Activity. Materials Today: Proceedings (2019). https://doi.org/10.1016/j.matpr.2018.10.376
-
Kondal, N.: Effect of high temperature annealing on structural and defect associated properties on ZnO nanoparticles. Materials Today: Proceedings (2021). https://doi.org/10.1016/j.matpr.2020.09.009
-
Tabib, A., Bouslama, W., Sieber, B., Addad, A., Elhouichet, H., Férid, M., Boukherroub, R.: Structural and optical properties of Na doped ZnO nanocrystals: Application to solar photocatalysis. Applied Surface Science (2017). https://doi.org/10.1016/j.apsusc.2016.11.204
-
Ismail, A.M., Menazea, A.A., Kabary, H.A., El-Sherbiny, A.E., Samy, A.: The influence of calcination temperature on structural and antimicrobial characteristics of zinc oxide nanoparticles synthesized by Sol–Gel method. Journal of Molecular Structure (2019). https://doi.org/10.1016/j.molstruc.2019.06.084
-
Al Abdullah, K., Awad, S., Zaraket, J., Salame, C.: Synthesis of ZnO Nanopowders By Using Sol-Gel and Studying Their Structural and Electrical Properties at Different Temperature. Energy Procedia (2017). https://doi.org/10.1016/j.egypro.2017.07.080
-
Peña-Garcia, R., Guerra, Y., Farias, B., Buitrago, D.M., Franco, A., Padrón-Hernández, E.: Effects of temperature and atomic disorder on the magnetic phase transitions in ZnO nanoparticles obtained by sol–gel method. Materials Letters (2018). https://doi.org/10.1016/j.matlet.2018.08.148
-
Sowri Babu, K., Ramachandra Reddy, A., Sujatha, C., Venugopal Reddy, K., Mallika, A.N.: Synthesis and optical characterization of porous ZnO. J Adv Ceram (2013). https://doi.org/10.1007/s40145-013-0069-6
-
Siddique, M., Fayaz, N., Saeed, M.: Synthesis, characterization, photocatalytic activity and gas sensing properties of zinc doped manganese oxide nanoparticles. Physica B: Condensed Matter (2021). https://doi.org/10.1016/j.physb.2020.412504
-
Mahdavi, R., Ashraf Talesh, S.S.: The effect of ultrasonic irradiation on the structure, morphology and photocatalytic performance of ZnO nanoparticles by sol-gel method. Ultrasonics sonochemistry (2017). https://doi.org/10.1016/j.ultsonch.2017.05.012
-
Hasnidawani, J.N., Azlina, H.N., Norita, H., Bonnia, N.N., Ratim, S., Ali, E.S.: Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chemistry (2016). https://doi.org/10.1016/j.proche.2016.03.095
-
Suwanboon, S., Amornpitoksuk, P., Randorn, C.: Effect of tartaric acid as a structure-directing agent on different ZnO morphologies and their physical and photocatalytic properties. Ceramics International (2019). https://doi.org/10.1016/j.ceramint.2018.10.116
-
Retamoso, C., Escalona, N., González, M., Barrientos, L., Allende-González, P., Stancovich, S., Serpell, R., Fierro, J., Lopez, M.: Effect of particle size on the photocatalytic activity of modified rutile sand (TiO2) for the discoloration of methylene blue in water. Journal of Photochemistry and Photobiology A: Chemistry (2019). https://doi.org/10.1016/j.jphotochem.2019.04.021
-
Jaramillo, A.F., Baez-Cruz, R., Montoya, L.F., Medinam, C., Pérez-Tijerina, E., Salazar, F., Rojas, D., Melendrez, M.F.: Estimation of the surface interaction mechanism of ZnO nanoparticles modified with organosilane groups by Raman Spectroscopy. Ceramics International (2017). https://doi.org/10.1016/j.ceramint.2017.06.027
-
N. Funda AK AZEM, Işıl BİRLİK: Sol-jel Yöntemi ile Hazırlanmış ZnO Nanopartiküllerin Optimizasyonu. https://doi.org/10.21205/deufmd.
-
Shoaib, A., Ji, M., Qian, H., Liu, J., Xu, M., Zhang, J.: Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Res. (2016). https://doi.org/10.1007/s12274-016-1069-y
-
Ashraf, R., Riaz, S., Kayani, Z.N., Naseem, S.: Effect of Calcination on Properties of ZnO Nanoparticles. Materials Today: Proceedings (2015). https://doi.org/10.1016/j.matpr.2015.11.071
-
Deepty, M., Srinivas, C., Kumar, E.R., Mohan, N.K., Prajapat, C.L., Rao, T.C., Meena, S.S., Verma, A.K., Sastry, D.L.: XRD, EDX, FTIR and ESR spectroscopic studies of co-precipitated Mn–substituted Zn–ferrite nanoparticles. Ceramics International (2019). https://doi.org/10.1016/j.ceramint.2019.01.029
-
Golsheikh, A.M., Kamali, K.Z., Huang, N.M., Zak, A.K.: Effect of calcination temperature on performance of ZnO nanoparticles for dye-sensitized solar cells. Powder Technology (2018). https://doi.org/10.1016/j.powtec.2017.11.065
-
Raj, K.P., Sadayandi, K.: Effect of temperature on structural, optical and photoluminescence studies on ZnO nanoparticles synthesized by the standard co-precipitation method. Physica B: Condensed Matter (2016). https://doi.org/10.1016/j.physb.2016.01.020
-
Ungula, J., Dejene, B.F.: Effect of solvent medium on the structural, morphological and optical properties of ZnO nanoparticles synthesized by the sol–gel method. Physica B: Condensed Matter (2016). https://doi.org/10.1016/j.physb.2015.10.007
-
Kim, S., Park, H., Choi, W.: Comparative Study of Homogeneous and Heterogeneous Photocatalytic Redox Reactions: PW(12)O(40)(3-) vs TiO(2). The journal of physical chemistry. B (2004). https://doi.org/10.1021/jp049789g
-
Xu, S., Wang, Z.L.: One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. (2011). https://doi.org/10.1007/s12274-011-0160-7
-
Li, D., Song, H., Meng, X., Shen, T., Sun, J., Han, W., Wang, X.: Effects of Particle Size on the Structure and Photocatalytic Performance by Alkali-Treated TiO2. Nanomaterials (Basel, Switzerland) (2020). https://doi.org/10.3390/nano10030546
-
Thanh, N. T. K., Maclean, N., & Mahiddine, S. (2014). Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, 114(15), 7610–7630. https://doi.org/10.1021/cr400544s
Investigation of the influence of tartaric acid quantity and calcination temperature on the morphology, crystal structure, and photocatalytic activity of zinc oxide nanoparticles
Year 2025,
Volume: 9 Issue: 4, 335 - 344, 28.12.2025
Serra Ersoy
,
Figen Kaya
,
Cengiz Kaya
Abstract
In this research article, using zinc acetate dihydrate and tartaric acid, six distinct zinc oxide (ZnO) nanoparticles were synthesized with the sol-gel method to assess the effects of varying the amount of tartaric acid (0.1, 0.05, and 0.01 moles) and the calcination temperatures (400, 500, and 600o C) on the features of morphological, crystal structure, and photocatalytic activity. Moreover, to understand the effect of tartaric acid on photocatalytic activity, UV-visible spectrophotometer analysis was performed by keeping ZnO nanoparticles calcined at 500°C under methylene blue and UV light for 15, 30, 45, 60, 75, and 90 minutes. According to the analysis results, raising the tartaric acid moles generates ZnO nanoparticles with a finer and more uniform prismatic shape; it additionally minimizes the porosity of the particles, which decreases the photocatalytic activity. As a result of this, ZnO nanoparticles prepared with 0.05 mol of tartaric acid have the ultimate photocatalytic activity and promote the destruction of over 94.51% of methylene blue in just 90 minutes. The ZnO nanoparticles developed in this study will likely be employed in surface coatings since they do not harm organic materials or human health, are long-lasting, and use light energy to trigger a chemical reaction.
Ethical Statement
The local Institutional Review Board deemed the study exempt from review
Supporting Institution
The authors are grateful for the financial support from TUBITAK (No: 122M836).
Thanks
The authors also acknowledge the financial support from Yıldız Technical University under contract numbers FBA-2024-6093, FDK-2019-3742, and FBA-2023-5301, respectively. TG/DTA and UV-visible analyses were carried out at Sabancı University Nanotechnology Application and Research Center (SUNUM).
References
-
Rajaboopathi, S., Thambidurai, S.: Synthesis of bio-surfactant based Ag/ZnO nanoparticles for better thermal, photocatalytic and antibacterial activity. Materials Chemistry and Physics (2019). https://doi.org/10.1016/j.matchemphys.2018.11.034
-
Duo, S., Zhang, L., Zhong, R., Liu, Z., Huang, L., Liu, T., Zhang, Y.: Controllable tartaric acid modified ZnO crystals and their modification−determined optical, superhydrophilic/hydrophilic and photocatalytic properties. Journal of Alloys and Compounds (2018). https://doi.org/10.1016/j.jallcom.2018.07.195
-
Abed, C., Ali, M.B., Addad, A., Elhouichet, H.: Growth, structural and optical properties of ZnO-ZnMgO-MgO nanocomposites and their photocatalytic activity under sunlight irradiation. Materials Research Bulletin 110, 230–238 (2019)
-
Cho, J., Lin, Q., Yang, S., Simmons, J.G., Cheng, Y., Lin, E., Yang, J., Foreman, J.V., Everitt, H.O., Yang, W., Kim, J., Liu, J.: Sulfur-doped zinc oxide (ZnO) Nanostars: Synthesis and simulation of growth mechanism. Nano Res. (2012). https://doi.org/10.1007/s12274-011-0180-3
-
Ba-Abbad, M.M., Kadhum, A.A.H., Bakar Mohamad, A., Takriff, M.S., Sopian, K.: The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol–gel technique. Journal of Alloys and Compounds (2013). https://doi.org/10.1016/j.jallcom.2012.09.076
-
Kumar, A.: Sol gel synthesis of zinc oxide nanoparticles and their application as nano-composite electrode material for supercapacitor. Journal of Molecular Structure (2020). https://doi.org/10.1016/j.molstruc.2020.128654
-
Pallavolu, M.R., Nallapureddy, J., Nallapureddy, R.R., Neelima, G., Yedluri, A.K., Mandal, T.K., Pejjai, B., Joo, S.W.: Self-assembled and highly faceted growth of Mo and V doped ZnO nanoflowers for high-performance supercapacitors. Journal of Alloys and Compounds (2021). https://doi.org/10.1016/j.jallcom.2021.161234
-
Biji, M., Irfana, M.I., Sreejamol, S., Shajesh, P., Ananthakumar, S., Mangalaraja, R.V., Anas, S.: Tartaric Acid Mediated Gelation Synthesis of Zinc Oxide Nanoparticles and their Photocatalytic Activity. Materials Today: Proceedings (2019). https://doi.org/10.1016/j.matpr.2018.10.376
-
Kondal, N.: Effect of high temperature annealing on structural and defect associated properties on ZnO nanoparticles. Materials Today: Proceedings (2021). https://doi.org/10.1016/j.matpr.2020.09.009
-
Tabib, A., Bouslama, W., Sieber, B., Addad, A., Elhouichet, H., Férid, M., Boukherroub, R.: Structural and optical properties of Na doped ZnO nanocrystals: Application to solar photocatalysis. Applied Surface Science (2017). https://doi.org/10.1016/j.apsusc.2016.11.204
-
Ismail, A.M., Menazea, A.A., Kabary, H.A., El-Sherbiny, A.E., Samy, A.: The influence of calcination temperature on structural and antimicrobial characteristics of zinc oxide nanoparticles synthesized by Sol–Gel method. Journal of Molecular Structure (2019). https://doi.org/10.1016/j.molstruc.2019.06.084
-
Al Abdullah, K., Awad, S., Zaraket, J., Salame, C.: Synthesis of ZnO Nanopowders By Using Sol-Gel and Studying Their Structural and Electrical Properties at Different Temperature. Energy Procedia (2017). https://doi.org/10.1016/j.egypro.2017.07.080
-
Peña-Garcia, R., Guerra, Y., Farias, B., Buitrago, D.M., Franco, A., Padrón-Hernández, E.: Effects of temperature and atomic disorder on the magnetic phase transitions in ZnO nanoparticles obtained by sol–gel method. Materials Letters (2018). https://doi.org/10.1016/j.matlet.2018.08.148
-
Sowri Babu, K., Ramachandra Reddy, A., Sujatha, C., Venugopal Reddy, K., Mallika, A.N.: Synthesis and optical characterization of porous ZnO. J Adv Ceram (2013). https://doi.org/10.1007/s40145-013-0069-6
-
Siddique, M., Fayaz, N., Saeed, M.: Synthesis, characterization, photocatalytic activity and gas sensing properties of zinc doped manganese oxide nanoparticles. Physica B: Condensed Matter (2021). https://doi.org/10.1016/j.physb.2020.412504
-
Mahdavi, R., Ashraf Talesh, S.S.: The effect of ultrasonic irradiation on the structure, morphology and photocatalytic performance of ZnO nanoparticles by sol-gel method. Ultrasonics sonochemistry (2017). https://doi.org/10.1016/j.ultsonch.2017.05.012
-
Hasnidawani, J.N., Azlina, H.N., Norita, H., Bonnia, N.N., Ratim, S., Ali, E.S.: Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chemistry (2016). https://doi.org/10.1016/j.proche.2016.03.095
-
Suwanboon, S., Amornpitoksuk, P., Randorn, C.: Effect of tartaric acid as a structure-directing agent on different ZnO morphologies and their physical and photocatalytic properties. Ceramics International (2019). https://doi.org/10.1016/j.ceramint.2018.10.116
-
Retamoso, C., Escalona, N., González, M., Barrientos, L., Allende-González, P., Stancovich, S., Serpell, R., Fierro, J., Lopez, M.: Effect of particle size on the photocatalytic activity of modified rutile sand (TiO2) for the discoloration of methylene blue in water. Journal of Photochemistry and Photobiology A: Chemistry (2019). https://doi.org/10.1016/j.jphotochem.2019.04.021
-
Jaramillo, A.F., Baez-Cruz, R., Montoya, L.F., Medinam, C., Pérez-Tijerina, E., Salazar, F., Rojas, D., Melendrez, M.F.: Estimation of the surface interaction mechanism of ZnO nanoparticles modified with organosilane groups by Raman Spectroscopy. Ceramics International (2017). https://doi.org/10.1016/j.ceramint.2017.06.027
-
N. Funda AK AZEM, Işıl BİRLİK: Sol-jel Yöntemi ile Hazırlanmış ZnO Nanopartiküllerin Optimizasyonu. https://doi.org/10.21205/deufmd.
-
Shoaib, A., Ji, M., Qian, H., Liu, J., Xu, M., Zhang, J.: Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Res. (2016). https://doi.org/10.1007/s12274-016-1069-y
-
Ashraf, R., Riaz, S., Kayani, Z.N., Naseem, S.: Effect of Calcination on Properties of ZnO Nanoparticles. Materials Today: Proceedings (2015). https://doi.org/10.1016/j.matpr.2015.11.071
-
Deepty, M., Srinivas, C., Kumar, E.R., Mohan, N.K., Prajapat, C.L., Rao, T.C., Meena, S.S., Verma, A.K., Sastry, D.L.: XRD, EDX, FTIR and ESR spectroscopic studies of co-precipitated Mn–substituted Zn–ferrite nanoparticles. Ceramics International (2019). https://doi.org/10.1016/j.ceramint.2019.01.029
-
Golsheikh, A.M., Kamali, K.Z., Huang, N.M., Zak, A.K.: Effect of calcination temperature on performance of ZnO nanoparticles for dye-sensitized solar cells. Powder Technology (2018). https://doi.org/10.1016/j.powtec.2017.11.065
-
Raj, K.P., Sadayandi, K.: Effect of temperature on structural, optical and photoluminescence studies on ZnO nanoparticles synthesized by the standard co-precipitation method. Physica B: Condensed Matter (2016). https://doi.org/10.1016/j.physb.2016.01.020
-
Ungula, J., Dejene, B.F.: Effect of solvent medium on the structural, morphological and optical properties of ZnO nanoparticles synthesized by the sol–gel method. Physica B: Condensed Matter (2016). https://doi.org/10.1016/j.physb.2015.10.007
-
Kim, S., Park, H., Choi, W.: Comparative Study of Homogeneous and Heterogeneous Photocatalytic Redox Reactions: PW(12)O(40)(3-) vs TiO(2). The journal of physical chemistry. B (2004). https://doi.org/10.1021/jp049789g
-
Xu, S., Wang, Z.L.: One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. (2011). https://doi.org/10.1007/s12274-011-0160-7
-
Li, D., Song, H., Meng, X., Shen, T., Sun, J., Han, W., Wang, X.: Effects of Particle Size on the Structure and Photocatalytic Performance by Alkali-Treated TiO2. Nanomaterials (Basel, Switzerland) (2020). https://doi.org/10.3390/nano10030546
-
Thanh, N. T. K., Maclean, N., & Mahiddine, S. (2014). Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, 114(15), 7610–7630. https://doi.org/10.1021/cr400544s