Biaxial deformation behavior of friction stir processed TRIP steel sheets
Year 2019,
, 56 - 61, 20.06.2019
İmren Ozturk Yilmaz
,
Onur Saray
,
Mumin Yilmaz
Abstract
In this study, effects of Friction Stir Processing (FSP) on the biaxial deformation behavior of 1.95 mm thick TRIP 780 steel sheets were investigated. FSP induced large plastic shear strains imposed at elevated temperature of about 945°C have drastically changed both microstructure and flow behavior of the steel. For these reason, after the FSP, significant changes in the microstructural and mechanical properties were obtained. After FSP, initial microstructure of the TRIP-steel transformed into a microstructure that mainly dominated by martensite grains. This transformation resulted with nearly two-fold hardness increase in stir zone. Similarly, lath martensite dominated microstructure elevated the FSPed condition into an ultra-high strength level with expense of room temperature ductility. After FSP, yield strength and UTS increased from 415MPa and 829 MPa to about 1280 MPa and 1475 MPa. Uniform elongation and elongation to failure decreased from 23% and 11% to 34% and 22% respectively. In accordance to decreased ductility, Erichsen index (EI) of the steel decreased from 9.16 mm to 4.90 mm under biaxial stretching conditions In contrast to strength enhancement punch force at EI of TRIP-780 also decreased from 80.6 kN to 45.4 kN respectively. This simultaneous decrease in both Ei and FEi attributed to increase in cracking tendency of the FSP induced microstructure.
Supporting Institution
TÜBİTAK
Thanks
This work was supported by Scientific and Technical Research Council of Turkey (TÜBİTAK) under Grant No: 115M649. We would like to thank to support of BEYÇELİK GESTAMP and BORÇELİK.
References
- Paltsev, Y.H., Karplus, V., Kishimoto, P., Reilly, J., Löschel, A., Von Graevenitz, K., Koesler, S. (2018). Impacts of CO2 Mandates for New Cars in the European Union.
- Transportation Research Record Journal of the Transportation Research Board, 45 (2): 573, DOI:https://globalchange.mit.edu/sites/default/files/MITJPSPGC_Rpt281.pdf
- Sugimoto, K., Mukherjee, M. (2017). Automotive Steels Woodhead Publishing https://doi.org/10.1016/C2015-0-00236-2.
- Posada, M., Reynolds, A.P., Skinner, M., Halpin, J.P., Jata, K.V., Mahoney, M.W., Mishra, R.S., Semiatin, S.L., Filed, D.P. (2001). The Minerals, Metals & Materials Society,159,
Mishra, R.S., Mahoney, M.W. (2007). Friction Stir Welding and Processing. ASM International .
- Mishra, R.S., Ma, Z.Y. (2005). Friction stir welding and processing. Materials Science and Engineering: R: Reports, 50 (1-2): 1-78, DOI:http://dx.doi.org/10.1016/j.mser.2005.07.001.
- Hajian, M., Abdollah-zadeh, A., Rezaei-Nejad, S.S., et al. (2015). Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel. Materials & Design, 67: 82-94, DOI:http://dx.doi.org/10.1016/j.matdes.2014.10.082.
- Rezaei-Nejad, S.S., Abdollah-zadeh, A., Hajian, M., Kargar, F., Seraj, R. (2015). Formation of Nanostructure in AISI 316L Austenitic Stainless Steel by Friction Stir Processing. Procedia Materials Science, 11: 397-402,DOI:http://dx.doi.org/10.1016/j.mspro.2015.11.008.
- Cui, H.B., Xie, G.M., Luo, Z.A., Ma, J., Wang, G.D., Misra, R.D.K. (2016). Microstructural evolution and mechanical properties of the stir zone in friction stir processed AISI201 stainless steel. Materials & Design, 106: 463-475, DOI:http://doi.org/10.1016/j.matdes.2016.05.106.
- Tinubu, O.O., Das, S., Dutt, A., et al. (2016). Friction stir processing of A-286 stainless steel: Microstructural evolution during wear. Wear, 356-357: 94-100.
DOI:http://dx.doi.org/10.1016/j.wear.2016.03.018.
- [10] Zhang, H., Wang, D., Xue, P., Wu, L.H., Ni, D.R., Ma, Z.Y. (2016). Microstructural evolution and pitting corrosion behavior of friction stir welded joint of high nitrogen stainless steel. Materials & Design, 110: 802-810,DOI:http://doi.org/10.1016/j.matdes.2016.08.048.
- Liu, F.C., Nelson, T.W. (2017). In-situ grain structure and texture evolution during friction stir welding of austenite stainless steel. Materials & Design, 115: 467-478, DOI:http://doi.org/10.1016/j.matdes.2016.11.066.
- Mishra, M.K., Gunasekaran, G., Rao, A.G., Kashyap, B.P., Prabhu, N. (2017). Effect of Multipass Friction Stir Processing on Mechanical and Corrosion Behavior of 2507 Super Duplex Stainless Steel. Journal of Materials Engineering and Performance, 26 (2): 849-860, DOI:10.1007/s11665-016-2470-0.
- Chabok, A., Dehghani, K., Ahmadi Jazani M. (2015). Comparing the Fatigue and Corrosion Behavior of Nanograin and Coarse-Grain IF Steels. Acta Metallurgica Sinica, 28: 295-301, Doi:10.1007/s40195-014-0196-2.
- Sekban, D.M., Saray, O., Aktarer, S.M., Purcek, G., Ma Z.Y. (2015). Microstructure, mechanical properties and formability of friction stir processed interstitial-free steel. Materials Science and Engineering: A, 642: 57-64,DOI:http://dx.doi.org/10.1016/j.msea.2015.06.068.
- Wang, W., Xu, R., Hao, Y., et al. (2018). Corrosion fatigue behavior of friction stir processed interstitial free steel. Journal of Materials Science & Technology, 34(1): 148-156, DOI:https://doi.org/10.1016/j.jmst.2017.11.013.
- Zhang, L., Chen, Z., Wang, Y., et al. (2017). Fabricating interstitial-free steel with simultaneous high strength and good ductility with homogeneous layer and lamella structure. Scripta Materialia, 141: 111-114, DOI:https://doi.org/10.1016/j.scriptamat.2017.06.044.
- Fujii, H., Cui, L., Tsuji, N., Maeda, M., Nakata, K., Nogi K. (2006). Friction stir welding of carbon steels. Materials Science and Engineering: A, 429 (1-2): 50-57, DOI:http://dx.doi.org/10.1016/j.msea.2006.04.118.
- Aldajah, S.H., Ajayi, O.O., Fenske, G.R, David S. (2009). Effect of friction stir processing on the tribological performance of high carbon steel. Wear, 267 (1-4): 350-355, DOI:http://dx.doi.org/10.1016/j.wear.2008.12.020.
- CChoi, D.H., et al. (2010). Effect of fixed location variation in friction stir welding of steels with different carbon contents. Science and Technology of Welding and Joining, 15(4): 299-304, DOI:https://doi.org/10.1179/136217109X12577814486737.
- Khodir, S.A., Morisada, Y., Ueji, R., Fujii H. (2012). Microstructures and mechanical properties evolution during friction stir welding of SK4 high carbon steel alloy. Materials Science and Engineering: A, 558: 572-578, DOI:http://dx.doi.org/10.1016/j.msea.2012.08.052.
- Xue, P., Xiao, B.L., Wang, W.G., et al. (2013). Achieving ultrafine dual-phase structure with superior mechanical property in friction stir processed plain low carbon steel. Materials Science and Engineering: A, 575: 30-34, DOI:http://dx.doi.org/10.1016/j.msea.2013.03.033.
- Sekban, D.M., Aktarer, S.M., Xue, P., Ma, Z.Y., Purcek, G., (2016). Impact toughness of friction stir processed low carbon steel used in shipbuilding. Materials Science and Engineering: A, 672: 40-48, DOI:http://dx.doi.org/10.1016/j.msea.2016.06.063.
- Konkol, P.J., Mathers, J.A., Johnson, R., Pickens J.R. (2003). Friction Stir Welding of HSLA-65 Steel for Shipbuilding. Journal of Ship Production, 19 (3): 159-164,DOI: https://www.ingentaconnect.com/content/sname/jsp/2003/00000019/00000003/art00005.
- Nelson, T.W., Rose, S.A. (2016). Controlling hard zone formation in friction stir processed HSLA steel. Journal of Materials Processing Technology, 231: 66-74, DOI:http://dx.doi.org/10.1016/j.jmatprotec.2015.12.013.
Year 2019,
, 56 - 61, 20.06.2019
İmren Ozturk Yilmaz
,
Onur Saray
,
Mumin Yilmaz
References
- Paltsev, Y.H., Karplus, V., Kishimoto, P., Reilly, J., Löschel, A., Von Graevenitz, K., Koesler, S. (2018). Impacts of CO2 Mandates for New Cars in the European Union.
- Transportation Research Record Journal of the Transportation Research Board, 45 (2): 573, DOI:https://globalchange.mit.edu/sites/default/files/MITJPSPGC_Rpt281.pdf
- Sugimoto, K., Mukherjee, M. (2017). Automotive Steels Woodhead Publishing https://doi.org/10.1016/C2015-0-00236-2.
- Posada, M., Reynolds, A.P., Skinner, M., Halpin, J.P., Jata, K.V., Mahoney, M.W., Mishra, R.S., Semiatin, S.L., Filed, D.P. (2001). The Minerals, Metals & Materials Society,159,
Mishra, R.S., Mahoney, M.W. (2007). Friction Stir Welding and Processing. ASM International .
- Mishra, R.S., Ma, Z.Y. (2005). Friction stir welding and processing. Materials Science and Engineering: R: Reports, 50 (1-2): 1-78, DOI:http://dx.doi.org/10.1016/j.mser.2005.07.001.
- Hajian, M., Abdollah-zadeh, A., Rezaei-Nejad, S.S., et al. (2015). Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel. Materials & Design, 67: 82-94, DOI:http://dx.doi.org/10.1016/j.matdes.2014.10.082.
- Rezaei-Nejad, S.S., Abdollah-zadeh, A., Hajian, M., Kargar, F., Seraj, R. (2015). Formation of Nanostructure in AISI 316L Austenitic Stainless Steel by Friction Stir Processing. Procedia Materials Science, 11: 397-402,DOI:http://dx.doi.org/10.1016/j.mspro.2015.11.008.
- Cui, H.B., Xie, G.M., Luo, Z.A., Ma, J., Wang, G.D., Misra, R.D.K. (2016). Microstructural evolution and mechanical properties of the stir zone in friction stir processed AISI201 stainless steel. Materials & Design, 106: 463-475, DOI:http://doi.org/10.1016/j.matdes.2016.05.106.
- Tinubu, O.O., Das, S., Dutt, A., et al. (2016). Friction stir processing of A-286 stainless steel: Microstructural evolution during wear. Wear, 356-357: 94-100.
DOI:http://dx.doi.org/10.1016/j.wear.2016.03.018.
- [10] Zhang, H., Wang, D., Xue, P., Wu, L.H., Ni, D.R., Ma, Z.Y. (2016). Microstructural evolution and pitting corrosion behavior of friction stir welded joint of high nitrogen stainless steel. Materials & Design, 110: 802-810,DOI:http://doi.org/10.1016/j.matdes.2016.08.048.
- Liu, F.C., Nelson, T.W. (2017). In-situ grain structure and texture evolution during friction stir welding of austenite stainless steel. Materials & Design, 115: 467-478, DOI:http://doi.org/10.1016/j.matdes.2016.11.066.
- Mishra, M.K., Gunasekaran, G., Rao, A.G., Kashyap, B.P., Prabhu, N. (2017). Effect of Multipass Friction Stir Processing on Mechanical and Corrosion Behavior of 2507 Super Duplex Stainless Steel. Journal of Materials Engineering and Performance, 26 (2): 849-860, DOI:10.1007/s11665-016-2470-0.
- Chabok, A., Dehghani, K., Ahmadi Jazani M. (2015). Comparing the Fatigue and Corrosion Behavior of Nanograin and Coarse-Grain IF Steels. Acta Metallurgica Sinica, 28: 295-301, Doi:10.1007/s40195-014-0196-2.
- Sekban, D.M., Saray, O., Aktarer, S.M., Purcek, G., Ma Z.Y. (2015). Microstructure, mechanical properties and formability of friction stir processed interstitial-free steel. Materials Science and Engineering: A, 642: 57-64,DOI:http://dx.doi.org/10.1016/j.msea.2015.06.068.
- Wang, W., Xu, R., Hao, Y., et al. (2018). Corrosion fatigue behavior of friction stir processed interstitial free steel. Journal of Materials Science & Technology, 34(1): 148-156, DOI:https://doi.org/10.1016/j.jmst.2017.11.013.
- Zhang, L., Chen, Z., Wang, Y., et al. (2017). Fabricating interstitial-free steel with simultaneous high strength and good ductility with homogeneous layer and lamella structure. Scripta Materialia, 141: 111-114, DOI:https://doi.org/10.1016/j.scriptamat.2017.06.044.
- Fujii, H., Cui, L., Tsuji, N., Maeda, M., Nakata, K., Nogi K. (2006). Friction stir welding of carbon steels. Materials Science and Engineering: A, 429 (1-2): 50-57, DOI:http://dx.doi.org/10.1016/j.msea.2006.04.118.
- Aldajah, S.H., Ajayi, O.O., Fenske, G.R, David S. (2009). Effect of friction stir processing on the tribological performance of high carbon steel. Wear, 267 (1-4): 350-355, DOI:http://dx.doi.org/10.1016/j.wear.2008.12.020.
- CChoi, D.H., et al. (2010). Effect of fixed location variation in friction stir welding of steels with different carbon contents. Science and Technology of Welding and Joining, 15(4): 299-304, DOI:https://doi.org/10.1179/136217109X12577814486737.
- Khodir, S.A., Morisada, Y., Ueji, R., Fujii H. (2012). Microstructures and mechanical properties evolution during friction stir welding of SK4 high carbon steel alloy. Materials Science and Engineering: A, 558: 572-578, DOI:http://dx.doi.org/10.1016/j.msea.2012.08.052.
- Xue, P., Xiao, B.L., Wang, W.G., et al. (2013). Achieving ultrafine dual-phase structure with superior mechanical property in friction stir processed plain low carbon steel. Materials Science and Engineering: A, 575: 30-34, DOI:http://dx.doi.org/10.1016/j.msea.2013.03.033.
- Sekban, D.M., Aktarer, S.M., Xue, P., Ma, Z.Y., Purcek, G., (2016). Impact toughness of friction stir processed low carbon steel used in shipbuilding. Materials Science and Engineering: A, 672: 40-48, DOI:http://dx.doi.org/10.1016/j.msea.2016.06.063.
- Konkol, P.J., Mathers, J.A., Johnson, R., Pickens J.R. (2003). Friction Stir Welding of HSLA-65 Steel for Shipbuilding. Journal of Ship Production, 19 (3): 159-164,DOI: https://www.ingentaconnect.com/content/sname/jsp/2003/00000019/00000003/art00005.
- Nelson, T.W., Rose, S.A. (2016). Controlling hard zone formation in friction stir processed HSLA steel. Journal of Materials Processing Technology, 231: 66-74, DOI:http://dx.doi.org/10.1016/j.jmatprotec.2015.12.013.