Research Article
BibTex RIS Cite
Year 2020, , 96 - 102, 20.09.2020
https://doi.org/10.26701/ems.635707

Abstract

References

  • Keskin A. (2009). Hibrit Araç Teknolojileri ve Uygulamalar. Mühendislik ve Makine, 50(597): 12-20.
  • Yufei, C., James, E. (1993). Heat Transfer Phenomena in Lithium/Polymer‐ Electrolyte Batteries for Electric Vehicle Application. Journal of Electrochemical Society, 140(7): 1833-1838. doi: 10.1149/1.2220724.
  • Şenlik, İ. (2015).Uyuyan Devrim: Elektrikli Araçlar. Elektrik Mühendisliği Dergisi, 455: 64-67.
  • Linden, D., Reddy, T. (2002). Handbook of Batteries, Third Eddition. McGraw-Hill, Section 22 and 35.
  • Chen, S., Wan C. C., Wang Y. Y. (2005). Thermal Analysis of Lithium‐Ion Batteries. Journal of Power Sources, 140: 111-124.
  • Wang, B. G., Chin, Y. W. (2000). Thermal-Electrochemical Modeling of Battery Systems. Journal of Electrochemical Society, 147(8): 2910-2922. doi: 10.1149/1.1393625.
  • Tie, S. F., Tan, C. W. (2013). A Review of Energy Sources and Energy Management System in Electric Vehicles. Renewable and Sustainable Energy Reviews, 20: 82- 102. doi: 10.1016/j.rser.2012.11.077.
  • Huang, Q., Yan, M., Jiang, Z. (2006). Thermal study on single electrodes in lithium-ion battery. Journal of the Power Sources, 156: 541-546. doi: 10.1016/j.jpowsour.2005.05.083.
  • Yufai, C., James, W. E. (1993). Heat Transfer Phenomena in Lithium/Polymer‐Electrolyte Batteries for Electric Vehicle Application. Journal of the Electrochemical Society, 140: 1833-1838. doi: 10.1149/1.2220724.
  • Yufai, C., James, W. E. (1994) .Three‐Dimensional Thermal Modeling of Lithium‐Polymer Batteries under Galvanostatic Discharge and Dynamic Power Profile. Journal of the Electrochemical Society, 141: 2947-2955. doi: 10.1149/1.2059263.
  • Yufai C., James, W. E. (1996). Thermal Analysis of Lithium‐Ion Batteries. Journal of the Electrochemical Society, 143: 2708-2712.
  • Pals, C. R., Newman, J. (1995). Thermal Modeling of the Lithium/Polymer Battery. Journal of the Electrochemical Society, 142: 3274-3281.
  • Newman, J., Thomas, K. E. (2012). Electrochemical Systems. John Wiley & Sons.
  • Botte, G. G., Johnson, B. A., White, R. E. (1999). Influence of Some Design Variables on the Thermal Behavior of a Lithium‐Ion Cell. Journal of the Electrochemical Society, 146: 914-923. doi:0.1149/1.1391700.
  • Al-Hallaj, S., Maleki, H., Hong, J. S., Selman, J. R. (1999). Thermal modeling and design considerations of lithium-ion batteries. Journal of the Power Sources, 83: 1-8. doi: 10.1016/S0378-7753(99)00178-0.
  • Song, L., Evans, J. W. (2000). Electrochemical‐Thermal Model of Lithium Polymer Batteries. Journal of the Electrochemical Society, 147: 2086-2095. doi: 10.1149/1.1393490.
  • Gu, W. B., Wang, C. Y. (2000). Thermal-Electrochemical Modeling of Battery Systems. Journal of the Electrochemical Society, 147: 2910-2922. DOI: 10.1149/1.1393625.
  • Gu, W. B., Wang C. Y. (2000). Thermal-Electrochemical Coupled Modeling of a Lithium-Ion Cell. Journal of the Electrochemical Society, 145: 3418-3429.
  • Kim, U. S., Shin, C. B., Kim, S. (2008). Thermal modeling and cooling analysis of high-power lithium ion cells. Journal of the Power Sources, 180: 570-575. doi: 10.1007/s11630-011-0512-3.
  • Kim, U. S., Shin, C. B., Kim, S. (2009). Modeling for the scale-up of a lithium-ion polymer battery. Journal of the Power Sources, 189: 841-846. doi: j.jpowsour.2008.10.019.
  • ANSYS Fluent Advanced Add-On Modules Manual (2015). ANSYS®, Inc. Canonsburg, PA: SAS IP Inc.
  • Yi, J., Kim, U. S., Shin, C. B., Han, T., Park, S. (2013). Three-dimensional thermal modeling of a lithium-ion battery considering the combined effects of the electrical and thermal contact resistances between current collecting tab and lead wire. Journal of the Electrochemical Society, 160: A434-A443. doi: 10.1149/2.039303jes.
  • Kwon, K. H. (2006). A Two-dimensional Modeling of a Lithium polymer battery. Journal of Power Sources, 163:151-157. doi: 10.1016/j.jpowsour.2006.03.012
  • Kim, U., Yi, J., Chin, S., Han, T., Park, S. (2011). Modeling the Dependence of the Discharge Behavior of a Lithium-Ion Battery on the Environmental Temperature. The Journal of the Electrochemical Society, 158: 611-618. doi: 10.1149/1.3565179

Investigation of Thermal Behavior of Lithium-Ion Batteries under Different Loads

Year 2020, , 96 - 102, 20.09.2020
https://doi.org/10.26701/ems.635707

Abstract

In this study, the thermal behavior and performance of pouch type Lithium-Ion Batteries (LIB) which are used in Hybrid Electric Vehicles (HEVs) and Electrical Vehicles (EVs) has been investigated at different discharge rates based on numerical simulations. Numerical simulation was performed through a traditional software package using the dual potential Multi-Scale Multi-Dimensional (MSMD) battery model to analyze the cell discharge behavior and investigate its thermal performance. When the battery load is increased, non-uniform thermal distribution and temperature rise has been observed. Non-uniform thermal distribution causes loss of capacity and performance in the battery. Therefore, an accurate and effective cooling system is required to eliminate non-uniform temperature distribution. This study is a preliminary preparation for cooling system design.

References

  • Keskin A. (2009). Hibrit Araç Teknolojileri ve Uygulamalar. Mühendislik ve Makine, 50(597): 12-20.
  • Yufei, C., James, E. (1993). Heat Transfer Phenomena in Lithium/Polymer‐ Electrolyte Batteries for Electric Vehicle Application. Journal of Electrochemical Society, 140(7): 1833-1838. doi: 10.1149/1.2220724.
  • Şenlik, İ. (2015).Uyuyan Devrim: Elektrikli Araçlar. Elektrik Mühendisliği Dergisi, 455: 64-67.
  • Linden, D., Reddy, T. (2002). Handbook of Batteries, Third Eddition. McGraw-Hill, Section 22 and 35.
  • Chen, S., Wan C. C., Wang Y. Y. (2005). Thermal Analysis of Lithium‐Ion Batteries. Journal of Power Sources, 140: 111-124.
  • Wang, B. G., Chin, Y. W. (2000). Thermal-Electrochemical Modeling of Battery Systems. Journal of Electrochemical Society, 147(8): 2910-2922. doi: 10.1149/1.1393625.
  • Tie, S. F., Tan, C. W. (2013). A Review of Energy Sources and Energy Management System in Electric Vehicles. Renewable and Sustainable Energy Reviews, 20: 82- 102. doi: 10.1016/j.rser.2012.11.077.
  • Huang, Q., Yan, M., Jiang, Z. (2006). Thermal study on single electrodes in lithium-ion battery. Journal of the Power Sources, 156: 541-546. doi: 10.1016/j.jpowsour.2005.05.083.
  • Yufai, C., James, W. E. (1993). Heat Transfer Phenomena in Lithium/Polymer‐Electrolyte Batteries for Electric Vehicle Application. Journal of the Electrochemical Society, 140: 1833-1838. doi: 10.1149/1.2220724.
  • Yufai, C., James, W. E. (1994) .Three‐Dimensional Thermal Modeling of Lithium‐Polymer Batteries under Galvanostatic Discharge and Dynamic Power Profile. Journal of the Electrochemical Society, 141: 2947-2955. doi: 10.1149/1.2059263.
  • Yufai C., James, W. E. (1996). Thermal Analysis of Lithium‐Ion Batteries. Journal of the Electrochemical Society, 143: 2708-2712.
  • Pals, C. R., Newman, J. (1995). Thermal Modeling of the Lithium/Polymer Battery. Journal of the Electrochemical Society, 142: 3274-3281.
  • Newman, J., Thomas, K. E. (2012). Electrochemical Systems. John Wiley & Sons.
  • Botte, G. G., Johnson, B. A., White, R. E. (1999). Influence of Some Design Variables on the Thermal Behavior of a Lithium‐Ion Cell. Journal of the Electrochemical Society, 146: 914-923. doi:0.1149/1.1391700.
  • Al-Hallaj, S., Maleki, H., Hong, J. S., Selman, J. R. (1999). Thermal modeling and design considerations of lithium-ion batteries. Journal of the Power Sources, 83: 1-8. doi: 10.1016/S0378-7753(99)00178-0.
  • Song, L., Evans, J. W. (2000). Electrochemical‐Thermal Model of Lithium Polymer Batteries. Journal of the Electrochemical Society, 147: 2086-2095. doi: 10.1149/1.1393490.
  • Gu, W. B., Wang, C. Y. (2000). Thermal-Electrochemical Modeling of Battery Systems. Journal of the Electrochemical Society, 147: 2910-2922. DOI: 10.1149/1.1393625.
  • Gu, W. B., Wang C. Y. (2000). Thermal-Electrochemical Coupled Modeling of a Lithium-Ion Cell. Journal of the Electrochemical Society, 145: 3418-3429.
  • Kim, U. S., Shin, C. B., Kim, S. (2008). Thermal modeling and cooling analysis of high-power lithium ion cells. Journal of the Power Sources, 180: 570-575. doi: 10.1007/s11630-011-0512-3.
  • Kim, U. S., Shin, C. B., Kim, S. (2009). Modeling for the scale-up of a lithium-ion polymer battery. Journal of the Power Sources, 189: 841-846. doi: j.jpowsour.2008.10.019.
  • ANSYS Fluent Advanced Add-On Modules Manual (2015). ANSYS®, Inc. Canonsburg, PA: SAS IP Inc.
  • Yi, J., Kim, U. S., Shin, C. B., Han, T., Park, S. (2013). Three-dimensional thermal modeling of a lithium-ion battery considering the combined effects of the electrical and thermal contact resistances between current collecting tab and lead wire. Journal of the Electrochemical Society, 160: A434-A443. doi: 10.1149/2.039303jes.
  • Kwon, K. H. (2006). A Two-dimensional Modeling of a Lithium polymer battery. Journal of Power Sources, 163:151-157. doi: 10.1016/j.jpowsour.2006.03.012
  • Kim, U., Yi, J., Chin, S., Han, T., Park, S. (2011). Modeling the Dependence of the Discharge Behavior of a Lithium-Ion Battery on the Environmental Temperature. The Journal of the Electrochemical Society, 158: 611-618. doi: 10.1149/1.3565179
There are 24 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Ceyda Kök 0000-0002-5536-3488

Alkan Alkaya 0000-0002-8235-6726

Publication Date September 20, 2020
Acceptance Date April 21, 2020
Published in Issue Year 2020

Cite

APA Kök, C., & Alkaya, A. (2020). Investigation of Thermal Behavior of Lithium-Ion Batteries under Different Loads. European Mechanical Science, 4(3), 96-102. https://doi.org/10.26701/ems.635707

Cited By











Dergi TR Dizin'de Taranmaktadır.

Flag Counter