Research Article
BibTex RIS Cite
Year 2021, , 121 - 129, 20.09.2021
https://doi.org/10.26701/ems.869293

Abstract

References

  • [1] Aslan, A., Salur, E. (2021) Düzcükoğlu H, Şahin ÖS, Ekrem M. The effects of harsh aging environments on the properties of neat and MWCNT reinforced epoxy resins. Construction and Building Materials. 272:121929.
  • [1] Aslan, A., Salur, E. (2021) Düzcükoğlu H, Şahin ÖS, Ekrem M. The effects of harsh aging environments on the properties of neat and MWCNT reinforced epoxy resins. Construction and Building Materials. 272:121929.
  • [2] Lee, H., Neville, K. (1967). Handbook of epoxy resins.
  • [2] Lee, H., Neville, K. (1967). Handbook of epoxy resins.
  • [3] Lee, LJ. (1989). Modeling and coputer simulation of reactive processing.
  • [3] Lee, LJ. (1989). Modeling and coputer simulation of reactive processing.
  • [4] Thomas, R., Durix S, Sinturel C, Omonov T, Goossens S, Groeninckx G, et al. (2007). Cure kinetics, morphology and miscibility of modified DGEBA-based epoxy resin–Effects of a liquid rubber inclusion. Polymer.;48(6):1695-710.
  • [4] Thomas, R., Durix S, Sinturel C, Omonov T, Goossens S, Groeninckx G, et al. (2007). Cure kinetics, morphology and miscibility of modified DGEBA-based epoxy resin–Effects of a liquid rubber inclusion. Polymer.;48(6):1695-710.
  • [5] Gibson, RF. (2016.). Principles of composite material mechanics: CRC press.
  • [5] Gibson, RF. (2016.). Principles of composite material mechanics: CRC press.
  • [6] Ebrahimabadi Y, Mehrshad M, Mokhtary M, Abdollahi M. (2021). Studies of thermal, mechanical properties, and kinetic cure reaction of carboxyl‐terminated polybutadiene acrylonitrile liquid rubber with diepoxy octane. Journal of Applied Polymer Science. 38(9):49932.
  • [6] Ebrahimabadi Y, Mehrshad M, Mokhtary M, Abdollahi M. (2021). Studies of thermal, mechanical properties, and kinetic cure reaction of carboxyl‐terminated polybutadiene acrylonitrile liquid rubber with diepoxy octane. Journal of Applied Polymer Science. 38(9):49932.
  • [7] Guild F, Kinloch A. (1995). Modelling the properties of rubber-modified epoxy polymers. Journal of materials science. 30(7):1689-97.
  • [7] Guild F, Kinloch A. (1995). Modelling the properties of rubber-modified epoxy polymers. Journal of materials science. 30(7):1689-97.
  • [8] Huang Y, Kinloch A. (1992) Modelling of the toughening mechanisms in rubber-modified epoxy polymers. Journal of materials science. 27(10):2753-62.
  • [8] Huang Y, Kinloch A. (1992) Modelling of the toughening mechanisms in rubber-modified epoxy polymers. Journal of materials science. 27(10):2753-62.
  • [9] Jung H-S, Park Y, Nah C-W, Lee J-C, Kim K-Y, Lee CS. Evaluation of the Mechanical Properties of Polyether Sulfone-Toughened Epoxy Resin for Carbon Fiber Composites. Fibers and Polymers.1-12.
  • [9] Jung H-S, Park Y, Nah C-W, Lee J-C, Kim K-Y, Lee CS. Evaluation of the Mechanical Properties of Polyether Sulfone-Toughened Epoxy Resin for Carbon Fiber Composites. Fibers and Polymers.1-12.
  • [10] Kinloch AJ, Guild FJ. (1996). Predictive modeling of the properties and toughness of rubber-toughened epoxies. ACS Publications.
  • [10] Kinloch AJ, Guild FJ. (1996). Predictive modeling of the properties and toughness of rubber-toughened epoxies. ACS Publications.
  • [11] Ramos VD, da Costa HM, Soares VL, Nascimento RS. (2005). Hybrid composites of epoxy resin modified with carboxyl terminated butadiene acrilonitrile copolymer and fly ash microspheres. Polymer Testing. 24(2):219-26.
  • [11] Ramos VD, da Costa HM, Soares VL, Nascimento RS. (2005). Hybrid composites of epoxy resin modified with carboxyl terminated butadiene acrilonitrile copolymer and fly ash microspheres. Polymer Testing. 24(2):219-26.
  • [12] Riew CK, Siebert A, Smith R, Fernando M, Kinloch A. (1996) Toughened epoxy resins: preformed particles as tougheners for adhesives and matrices. ACS Publications.
  • [12] Riew CK, Siebert A, Smith R, Fernando M, Kinloch A. (1996) Toughened epoxy resins: preformed particles as tougheners for adhesives and matrices. ACS Publications.
  • [13] Wang F, Drzal LT, Qin Y, Huang Z. (2016). Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets. Composites Part A: Applied Science and Manufacturing. 87:10-22.
  • [13] Wang F, Drzal LT, Qin Y, Huang Z. (2016). Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets. Composites Part A: Applied Science and Manufacturing. 87:10-22.
  • [14] Zhang J, Deng S, Wang Y, Ye L. (2016). Role of rigid nanoparticles and CTBN rubber in the toughening of epoxies with different cross-linking densities. Composites Part A: Applied Science and Manufacturing. 80:82-94.
  • [14] Zhang J, Deng S, Wang Y, Ye L. (2016). Role of rigid nanoparticles and CTBN rubber in the toughening of epoxies with different cross-linking densities. Composites Part A: Applied Science and Manufacturing. 80:82-94.
  • [15] Pearson R, Yee A. (1989). Toughening mechanisms in elastomer-modified epoxies. Journal of materials science. 24(7):2571-80.
  • [15] Pearson R, Yee A. (1989). Toughening mechanisms in elastomer-modified epoxies. Journal of materials science. 24(7):2571-80.
  • [16] Pearson RA, Yee AF. (1986). Toughening mechanisms in elastomer-modified epoxies. Journal of materials science. 21(7):2475-88.
  • [16] Pearson RA, Yee AF. (1986). Toughening mechanisms in elastomer-modified epoxies. Journal of materials science. 21(7):2475-88.
  • [17] Yee AF, Pearson RA. (1986). Toughening mechanisms in elastomer-modified epoxies. Journal of materials science. 21(7):2462-74.
  • [17] Yee AF, Pearson RA. (1986). Toughening mechanisms in elastomer-modified epoxies. Journal of materials science. 21(7):2462-74.
  • [18] Riew CK. (1989). Rubber-toughened plastics: American chemical society.
  • [18] Riew CK. (1989). Rubber-toughened plastics: American chemical society.
  • [19] Ignatova T, Kosyanchuk L, Todosiychuk T, Nesterov A. (2011). Reaction-induced phase separation and structure formation in polymer blends. Composite interfaces. 18(3):185-236.
  • [19] Ignatova T, Kosyanchuk L, Todosiychuk T, Nesterov A. (2011). Reaction-induced phase separation and structure formation in polymer blends. Composite interfaces. 18(3):185-236.
  • [20] Mathew VS, Sinturel C, George SC, Thomas S. (2010). Epoxy resin/liquid natural rubber system: secondary phase separation and its impact on mechanical properties. Journal of materials science. 45(7):1769-81.
  • [20] Mathew VS, Sinturel C, George SC, Thomas S. (2010). Epoxy resin/liquid natural rubber system: secondary phase separation and its impact on mechanical properties. Journal of materials science. 45(7):1769-81.
  • [21] Moschiar S, Riccardi C, Williams R, Verchere D, Sautereau H, Pascault J. (1991). Rubber‐modified epoxies. III. Analysis of experimental trends through a phase separation model. Journal of applied polymer science. 42(3):717-35.
  • [21] Moschiar S, Riccardi C, Williams R, Verchere D, Sautereau H, Pascault J. (1991). Rubber‐modified epoxies. III. Analysis of experimental trends through a phase separation model. Journal of applied polymer science. 42(3):717-35.
  • [22] Verchere D, Sautereau H, Pascault J, Moschiar S, Riccardi C, Williams R. (1990). Rubber‐modified epoxies. I. Influence of carboxyl‐terminated butadiene‐acrylonitrile random copolymers (CTBN) on the polymerization and phase separation processes. Journal of Applied Polymer Science. 41(3‐4):467-85.
  • [22] Verchere D, Sautereau H, Pascault J, Moschiar S, Riccardi C, Williams R. (1990). Rubber‐modified epoxies. I. Influence of carboxyl‐terminated butadiene‐acrylonitrile random copolymers (CTBN) on the polymerization and phase separation processes. Journal of Applied Polymer Science. 41(3‐4):467-85.
  • [23] Wise C, Cook WD, Goodwin AA. (2000). CTBN rubber phase precipitation in model epoxy resins. Polymer. 41(12):4625-33.
  • [23] Wise C, Cook WD, Goodwin AA. (2000). CTBN rubber phase precipitation in model epoxy resins. Polymer. 41(12):4625-33.
  • [24] Chikhi N, Fellahi S, Bakar M. (2002) Modification of epoxy resin using reactive liquid (ATBN) rubber. European Polymer Journal. 38(2):251-64.
  • [24] Chikhi N, Fellahi S, Bakar M. (2002) Modification of epoxy resin using reactive liquid (ATBN) rubber. European Polymer Journal. 38(2):251-64.
  • [25] Ratna D. (2001). Phase separation in liquid rubber modified epoxy mixture. Relationship between curing conditions, morphology and ultimate behavior. Polymer. 42(9):4209-18.
  • [25] Ratna D. (2001). Phase separation in liquid rubber modified epoxy mixture. Relationship between curing conditions, morphology and ultimate behavior. Polymer. 42(9):4209-18.
  • [26] Thomas R, Yumei D, Yuelong H, Le Y, Moldenaers P, Weimin Y, et al. (2008). Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer. 49(1):278-94.
  • [26] Thomas R, Yumei D, Yuelong H, Le Y, Moldenaers P, Weimin Y, et al. (2008). Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer. 49(1):278-94.
  • [27] Gledhill R, Kinloch A, Yamini S, Young R. (1978). Relationship between mechanical properties of and crack progogation in epoxy resin adhesives. Polymer. 19(5):574-82.
  • [27] Gledhill R, Kinloch A, Yamini S, Young R. (1978). Relationship between mechanical properties of and crack progogation in epoxy resin adhesives. Polymer. 19(5):574-82.
  • [28] Shan H-Z, Chou T-W. (1995). Transverse elastic moduli of unidirectional fiber composites with fiber/matrix interfacial debonding. Composites Science and Technology. 53(4):383-91.
  • [28] Shan H-Z, Chou T-W. (1995). Transverse elastic moduli of unidirectional fiber composites with fiber/matrix interfacial debonding. Composites Science and Technology. 53(4):383-91.
  • [29] Dadian A, Rahnama S, Zolfaghari A. (2020). Experimental study of the CTBN effect on mechanical properties and mode I and II fracture toughness of a new epoxy resin. Journal of Adhesion Science and Technology. 34(22):2389-404.
  • [29] Dadian A, Rahnama S, Zolfaghari A. (2020). Experimental study of the CTBN effect on mechanical properties and mode I and II fracture toughness of a new epoxy resin. Journal of Adhesion Science and Technology. 34(22):2389-404.
  • [30] Tripathi G, Srivastava D. (2008). Studies on the physico-mechanical and thermal characteristics of blends of DGEBA epoxy, 3, 4 epoxy cyclohexylmethyl, 3′, 4′-epoxycylohexane carboxylate and carboxyl terminated butadiene co-acrylonitrile (CTBN). Materials Science and Engineering: A. 496(1-2):483-93.
  • [30] Tripathi G, Srivastava D. (2008). Studies on the physico-mechanical and thermal characteristics of blends of DGEBA epoxy, 3, 4 epoxy cyclohexylmethyl, 3′, 4′-epoxycylohexane carboxylate and carboxyl terminated butadiene co-acrylonitrile (CTBN). Materials Science and Engineering: A. 496(1-2):483-93.
  • [31] Deb P, Ratna D, Chakraborty B. (1997). Carboxyl terminated poly (ethylene glycol) adipate modified epoxy network. I. Synthesis and thermal characterization. Journal of Polymer Materials(Netherlands). 14(2):189-94.
  • [31] Deb P, Ratna D, Chakraborty B. (1997). Carboxyl terminated poly (ethylene glycol) adipate modified epoxy network. I. Synthesis and thermal characterization. Journal of Polymer Materials(Netherlands). 14(2):189-94.
  • [32] Pearson R, Yee Y. (1983). Polymer Materials Sci. Preprints, Amer Chemical Soc.186:316.
  • [32] Pearson R, Yee Y. (1983). Polymer Materials Sci. Preprints, Amer Chemical Soc.186:316.
  • [33] Kim JK, Datta S. (2013). Rubber-thermoset blends: micro and nano structured. Advances in elastomers I: Springer. p. 229-62.
  • [33] Kim JK, Datta S. (2013). Rubber-thermoset blends: micro and nano structured. Advances in elastomers I: Springer. p. 229-62.
  • [34] Ratna D. (2007). Epoxy composites: impact resistance and flame retardancy: iSmithers Rapra Publishing.
  • [34] Ratna D. (2007). Epoxy composites: impact resistance and flame retardancy: iSmithers Rapra Publishing.
  • [35] Najipoor M, Haroonabadi L, Dashti A. (2018). Assessment of failures of nitrile rubber vulcanizates in rapid gas decompression (RGD) testing: Effect of physico-mechanical properties. Polymer Testing. 72:377-85.
  • [35] Najipoor M, Haroonabadi L, Dashti A. (2018). Assessment of failures of nitrile rubber vulcanizates in rapid gas decompression (RGD) testing: Effect of physico-mechanical properties. Polymer Testing. 72:377-85.
  • [36] Yahyaie H, Ebrahimi M, Tahami HV, Mafi ER. (2013). Toughening mechanisms of rubber modified thin film epoxy resins. Progress in Organic Coatings. 76(1):286-92.
  • [36] Yahyaie H, Ebrahimi M, Tahami HV, Mafi ER. (2013). Toughening mechanisms of rubber modified thin film epoxy resins. Progress in Organic Coatings. 76(1):286-92.
  • [37] Saleh AB, Ishak ZM, Hashim A, Kamil W, Ishiaku U. (2014). Synthesis and characterization of liquid natural rubber as impact modifier for epoxy resin. Physics Procedia. 55:129-37.
  • [37] Saleh AB, Ishak ZM, Hashim A, Kamil W, Ishiaku U. (2014). Synthesis and characterization of liquid natural rubber as impact modifier for epoxy resin. Physics Procedia. 55:129-37.
  • [38] Kinloch A, Hunston D. (1987). Effect of volume fraction of dispersed rubbery phase on the toughness of rubber-toughened epoxy polymers. Journal of materials science letters. 6(2):137-9.
  • [38] Kinloch A, Hunston D. (1987). Effect of volume fraction of dispersed rubbery phase on the toughness of rubber-toughened epoxy polymers. Journal of materials science letters. 6(2):137-9.
  • [39] Chen J-P, Lee Y-D. (1995). A real-time study of the phase-separation process during polymerization of rubber-modified epoxy. Polymer. 36(1):55-65.
  • [39] Chen J-P, Lee Y-D. (1995). A real-time study of the phase-separation process during polymerization of rubber-modified epoxy. Polymer. 36(1):55-65.
  • [40] Kiefer J, Hilborn J, Hedrick J. (1996). Chemically induced phase separation: a new technique for the synthesis of macroporous epoxy networks. Polymer. 37(25):5715-25.
  • [40] Kiefer J, Hilborn J, Hedrick J. (1996). Chemically induced phase separation: a new technique for the synthesis of macroporous epoxy networks. Polymer. 37(25):5715-25.
  • [41] Kim DS, Kim SC. (1994). Rubber modified epoxy resin. II: Phase separation behavior. Polymer Engineering & Science. 34(21):1598-604.
  • [41] Kim DS, Kim SC. (1994). Rubber modified epoxy resin. II: Phase separation behavior. Polymer Engineering & Science. 34(21):1598-604.

Characterization of Mechanical of CTBN Liquid Rubber‐Modified Epoxy Cured by Anhydride- and Amine-Based Agent

Year 2021, , 121 - 129, 20.09.2021
https://doi.org/10.26701/ems.869293

Abstract

The main purpose of this work is to reveal the effects of carboxyl-terminated butadiene–acrylonitrile (CTBN) rubber particles on the fracture and tensile behavior of anhydride-and amine-cured epoxy/CTBN blends. In this study, 1 wt.%, 3 wt.%, 5 wt.%, 7 wt.%, 10 wt.% and 15 wt.% CTBN were added to two different epoxy-hardener systems. The CTBN/epoxy blends were prepared by ultrasonic mixing device and curing processes were determined by DSC analysis. As CTBN fraction by weight increased in both epoxy systems, a decrease in tensile strength and modulus was detected, but deformation ability improved. The fracture toughness of CTBN/epoxy blends cured with amine-based hardener increased up to 10 wt.% CTBN addition and then decreased. The average rubber particle size was found to have a significant effect on the fracture toughness of CTBN/epoxy blends. Compared to pure epoxy, fracture toughness increased approximately 3.5-fold in amine-cured 10% CTBN / epoxy blend. In CTBN/epoxy blends cured by amine-based curing agent, CTBN shifted the reaction rate and thus it was provided better control over CTBN particle size in the cured CTBN/epoxy. The toughening mechanisms induced by CTBN, such as rubber cavitation and matrix shear banding, contributed to the enhanced fracture toughness of the amine-cured CTBN/epoxy.

References

  • [1] Aslan, A., Salur, E. (2021) Düzcükoğlu H, Şahin ÖS, Ekrem M. The effects of harsh aging environments on the properties of neat and MWCNT reinforced epoxy resins. Construction and Building Materials. 272:121929.
  • [1] Aslan, A., Salur, E. (2021) Düzcükoğlu H, Şahin ÖS, Ekrem M. The effects of harsh aging environments on the properties of neat and MWCNT reinforced epoxy resins. Construction and Building Materials. 272:121929.
  • [2] Lee, H., Neville, K. (1967). Handbook of epoxy resins.
  • [2] Lee, H., Neville, K. (1967). Handbook of epoxy resins.
  • [3] Lee, LJ. (1989). Modeling and coputer simulation of reactive processing.
  • [3] Lee, LJ. (1989). Modeling and coputer simulation of reactive processing.
  • [4] Thomas, R., Durix S, Sinturel C, Omonov T, Goossens S, Groeninckx G, et al. (2007). Cure kinetics, morphology and miscibility of modified DGEBA-based epoxy resin–Effects of a liquid rubber inclusion. Polymer.;48(6):1695-710.
  • [4] Thomas, R., Durix S, Sinturel C, Omonov T, Goossens S, Groeninckx G, et al. (2007). Cure kinetics, morphology and miscibility of modified DGEBA-based epoxy resin–Effects of a liquid rubber inclusion. Polymer.;48(6):1695-710.
  • [5] Gibson, RF. (2016.). Principles of composite material mechanics: CRC press.
  • [5] Gibson, RF. (2016.). Principles of composite material mechanics: CRC press.
  • [6] Ebrahimabadi Y, Mehrshad M, Mokhtary M, Abdollahi M. (2021). Studies of thermal, mechanical properties, and kinetic cure reaction of carboxyl‐terminated polybutadiene acrylonitrile liquid rubber with diepoxy octane. Journal of Applied Polymer Science. 38(9):49932.
  • [6] Ebrahimabadi Y, Mehrshad M, Mokhtary M, Abdollahi M. (2021). Studies of thermal, mechanical properties, and kinetic cure reaction of carboxyl‐terminated polybutadiene acrylonitrile liquid rubber with diepoxy octane. Journal of Applied Polymer Science. 38(9):49932.
  • [7] Guild F, Kinloch A. (1995). Modelling the properties of rubber-modified epoxy polymers. Journal of materials science. 30(7):1689-97.
  • [7] Guild F, Kinloch A. (1995). Modelling the properties of rubber-modified epoxy polymers. Journal of materials science. 30(7):1689-97.
  • [8] Huang Y, Kinloch A. (1992) Modelling of the toughening mechanisms in rubber-modified epoxy polymers. Journal of materials science. 27(10):2753-62.
  • [8] Huang Y, Kinloch A. (1992) Modelling of the toughening mechanisms in rubber-modified epoxy polymers. Journal of materials science. 27(10):2753-62.
  • [9] Jung H-S, Park Y, Nah C-W, Lee J-C, Kim K-Y, Lee CS. Evaluation of the Mechanical Properties of Polyether Sulfone-Toughened Epoxy Resin for Carbon Fiber Composites. Fibers and Polymers.1-12.
  • [9] Jung H-S, Park Y, Nah C-W, Lee J-C, Kim K-Y, Lee CS. Evaluation of the Mechanical Properties of Polyether Sulfone-Toughened Epoxy Resin for Carbon Fiber Composites. Fibers and Polymers.1-12.
  • [10] Kinloch AJ, Guild FJ. (1996). Predictive modeling of the properties and toughness of rubber-toughened epoxies. ACS Publications.
  • [10] Kinloch AJ, Guild FJ. (1996). Predictive modeling of the properties and toughness of rubber-toughened epoxies. ACS Publications.
  • [11] Ramos VD, da Costa HM, Soares VL, Nascimento RS. (2005). Hybrid composites of epoxy resin modified with carboxyl terminated butadiene acrilonitrile copolymer and fly ash microspheres. Polymer Testing. 24(2):219-26.
  • [11] Ramos VD, da Costa HM, Soares VL, Nascimento RS. (2005). Hybrid composites of epoxy resin modified with carboxyl terminated butadiene acrilonitrile copolymer and fly ash microspheres. Polymer Testing. 24(2):219-26.
  • [12] Riew CK, Siebert A, Smith R, Fernando M, Kinloch A. (1996) Toughened epoxy resins: preformed particles as tougheners for adhesives and matrices. ACS Publications.
  • [12] Riew CK, Siebert A, Smith R, Fernando M, Kinloch A. (1996) Toughened epoxy resins: preformed particles as tougheners for adhesives and matrices. ACS Publications.
  • [13] Wang F, Drzal LT, Qin Y, Huang Z. (2016). Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets. Composites Part A: Applied Science and Manufacturing. 87:10-22.
  • [13] Wang F, Drzal LT, Qin Y, Huang Z. (2016). Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets. Composites Part A: Applied Science and Manufacturing. 87:10-22.
  • [14] Zhang J, Deng S, Wang Y, Ye L. (2016). Role of rigid nanoparticles and CTBN rubber in the toughening of epoxies with different cross-linking densities. Composites Part A: Applied Science and Manufacturing. 80:82-94.
  • [14] Zhang J, Deng S, Wang Y, Ye L. (2016). Role of rigid nanoparticles and CTBN rubber in the toughening of epoxies with different cross-linking densities. Composites Part A: Applied Science and Manufacturing. 80:82-94.
  • [15] Pearson R, Yee A. (1989). Toughening mechanisms in elastomer-modified epoxies. Journal of materials science. 24(7):2571-80.
  • [15] Pearson R, Yee A. (1989). Toughening mechanisms in elastomer-modified epoxies. Journal of materials science. 24(7):2571-80.
  • [16] Pearson RA, Yee AF. (1986). Toughening mechanisms in elastomer-modified epoxies. Journal of materials science. 21(7):2475-88.
  • [16] Pearson RA, Yee AF. (1986). Toughening mechanisms in elastomer-modified epoxies. Journal of materials science. 21(7):2475-88.
  • [17] Yee AF, Pearson RA. (1986). Toughening mechanisms in elastomer-modified epoxies. Journal of materials science. 21(7):2462-74.
  • [17] Yee AF, Pearson RA. (1986). Toughening mechanisms in elastomer-modified epoxies. Journal of materials science. 21(7):2462-74.
  • [18] Riew CK. (1989). Rubber-toughened plastics: American chemical society.
  • [18] Riew CK. (1989). Rubber-toughened plastics: American chemical society.
  • [19] Ignatova T, Kosyanchuk L, Todosiychuk T, Nesterov A. (2011). Reaction-induced phase separation and structure formation in polymer blends. Composite interfaces. 18(3):185-236.
  • [19] Ignatova T, Kosyanchuk L, Todosiychuk T, Nesterov A. (2011). Reaction-induced phase separation and structure formation in polymer blends. Composite interfaces. 18(3):185-236.
  • [20] Mathew VS, Sinturel C, George SC, Thomas S. (2010). Epoxy resin/liquid natural rubber system: secondary phase separation and its impact on mechanical properties. Journal of materials science. 45(7):1769-81.
  • [20] Mathew VS, Sinturel C, George SC, Thomas S. (2010). Epoxy resin/liquid natural rubber system: secondary phase separation and its impact on mechanical properties. Journal of materials science. 45(7):1769-81.
  • [21] Moschiar S, Riccardi C, Williams R, Verchere D, Sautereau H, Pascault J. (1991). Rubber‐modified epoxies. III. Analysis of experimental trends through a phase separation model. Journal of applied polymer science. 42(3):717-35.
  • [21] Moschiar S, Riccardi C, Williams R, Verchere D, Sautereau H, Pascault J. (1991). Rubber‐modified epoxies. III. Analysis of experimental trends through a phase separation model. Journal of applied polymer science. 42(3):717-35.
  • [22] Verchere D, Sautereau H, Pascault J, Moschiar S, Riccardi C, Williams R. (1990). Rubber‐modified epoxies. I. Influence of carboxyl‐terminated butadiene‐acrylonitrile random copolymers (CTBN) on the polymerization and phase separation processes. Journal of Applied Polymer Science. 41(3‐4):467-85.
  • [22] Verchere D, Sautereau H, Pascault J, Moschiar S, Riccardi C, Williams R. (1990). Rubber‐modified epoxies. I. Influence of carboxyl‐terminated butadiene‐acrylonitrile random copolymers (CTBN) on the polymerization and phase separation processes. Journal of Applied Polymer Science. 41(3‐4):467-85.
  • [23] Wise C, Cook WD, Goodwin AA. (2000). CTBN rubber phase precipitation in model epoxy resins. Polymer. 41(12):4625-33.
  • [23] Wise C, Cook WD, Goodwin AA. (2000). CTBN rubber phase precipitation in model epoxy resins. Polymer. 41(12):4625-33.
  • [24] Chikhi N, Fellahi S, Bakar M. (2002) Modification of epoxy resin using reactive liquid (ATBN) rubber. European Polymer Journal. 38(2):251-64.
  • [24] Chikhi N, Fellahi S, Bakar M. (2002) Modification of epoxy resin using reactive liquid (ATBN) rubber. European Polymer Journal. 38(2):251-64.
  • [25] Ratna D. (2001). Phase separation in liquid rubber modified epoxy mixture. Relationship between curing conditions, morphology and ultimate behavior. Polymer. 42(9):4209-18.
  • [25] Ratna D. (2001). Phase separation in liquid rubber modified epoxy mixture. Relationship between curing conditions, morphology and ultimate behavior. Polymer. 42(9):4209-18.
  • [26] Thomas R, Yumei D, Yuelong H, Le Y, Moldenaers P, Weimin Y, et al. (2008). Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer. 49(1):278-94.
  • [26] Thomas R, Yumei D, Yuelong H, Le Y, Moldenaers P, Weimin Y, et al. (2008). Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer. 49(1):278-94.
  • [27] Gledhill R, Kinloch A, Yamini S, Young R. (1978). Relationship between mechanical properties of and crack progogation in epoxy resin adhesives. Polymer. 19(5):574-82.
  • [27] Gledhill R, Kinloch A, Yamini S, Young R. (1978). Relationship between mechanical properties of and crack progogation in epoxy resin adhesives. Polymer. 19(5):574-82.
  • [28] Shan H-Z, Chou T-W. (1995). Transverse elastic moduli of unidirectional fiber composites with fiber/matrix interfacial debonding. Composites Science and Technology. 53(4):383-91.
  • [28] Shan H-Z, Chou T-W. (1995). Transverse elastic moduli of unidirectional fiber composites with fiber/matrix interfacial debonding. Composites Science and Technology. 53(4):383-91.
  • [29] Dadian A, Rahnama S, Zolfaghari A. (2020). Experimental study of the CTBN effect on mechanical properties and mode I and II fracture toughness of a new epoxy resin. Journal of Adhesion Science and Technology. 34(22):2389-404.
  • [29] Dadian A, Rahnama S, Zolfaghari A. (2020). Experimental study of the CTBN effect on mechanical properties and mode I and II fracture toughness of a new epoxy resin. Journal of Adhesion Science and Technology. 34(22):2389-404.
  • [30] Tripathi G, Srivastava D. (2008). Studies on the physico-mechanical and thermal characteristics of blends of DGEBA epoxy, 3, 4 epoxy cyclohexylmethyl, 3′, 4′-epoxycylohexane carboxylate and carboxyl terminated butadiene co-acrylonitrile (CTBN). Materials Science and Engineering: A. 496(1-2):483-93.
  • [30] Tripathi G, Srivastava D. (2008). Studies on the physico-mechanical and thermal characteristics of blends of DGEBA epoxy, 3, 4 epoxy cyclohexylmethyl, 3′, 4′-epoxycylohexane carboxylate and carboxyl terminated butadiene co-acrylonitrile (CTBN). Materials Science and Engineering: A. 496(1-2):483-93.
  • [31] Deb P, Ratna D, Chakraborty B. (1997). Carboxyl terminated poly (ethylene glycol) adipate modified epoxy network. I. Synthesis and thermal characterization. Journal of Polymer Materials(Netherlands). 14(2):189-94.
  • [31] Deb P, Ratna D, Chakraborty B. (1997). Carboxyl terminated poly (ethylene glycol) adipate modified epoxy network. I. Synthesis and thermal characterization. Journal of Polymer Materials(Netherlands). 14(2):189-94.
  • [32] Pearson R, Yee Y. (1983). Polymer Materials Sci. Preprints, Amer Chemical Soc.186:316.
  • [32] Pearson R, Yee Y. (1983). Polymer Materials Sci. Preprints, Amer Chemical Soc.186:316.
  • [33] Kim JK, Datta S. (2013). Rubber-thermoset blends: micro and nano structured. Advances in elastomers I: Springer. p. 229-62.
  • [33] Kim JK, Datta S. (2013). Rubber-thermoset blends: micro and nano structured. Advances in elastomers I: Springer. p. 229-62.
  • [34] Ratna D. (2007). Epoxy composites: impact resistance and flame retardancy: iSmithers Rapra Publishing.
  • [34] Ratna D. (2007). Epoxy composites: impact resistance and flame retardancy: iSmithers Rapra Publishing.
  • [35] Najipoor M, Haroonabadi L, Dashti A. (2018). Assessment of failures of nitrile rubber vulcanizates in rapid gas decompression (RGD) testing: Effect of physico-mechanical properties. Polymer Testing. 72:377-85.
  • [35] Najipoor M, Haroonabadi L, Dashti A. (2018). Assessment of failures of nitrile rubber vulcanizates in rapid gas decompression (RGD) testing: Effect of physico-mechanical properties. Polymer Testing. 72:377-85.
  • [36] Yahyaie H, Ebrahimi M, Tahami HV, Mafi ER. (2013). Toughening mechanisms of rubber modified thin film epoxy resins. Progress in Organic Coatings. 76(1):286-92.
  • [36] Yahyaie H, Ebrahimi M, Tahami HV, Mafi ER. (2013). Toughening mechanisms of rubber modified thin film epoxy resins. Progress in Organic Coatings. 76(1):286-92.
  • [37] Saleh AB, Ishak ZM, Hashim A, Kamil W, Ishiaku U. (2014). Synthesis and characterization of liquid natural rubber as impact modifier for epoxy resin. Physics Procedia. 55:129-37.
  • [37] Saleh AB, Ishak ZM, Hashim A, Kamil W, Ishiaku U. (2014). Synthesis and characterization of liquid natural rubber as impact modifier for epoxy resin. Physics Procedia. 55:129-37.
  • [38] Kinloch A, Hunston D. (1987). Effect of volume fraction of dispersed rubbery phase on the toughness of rubber-toughened epoxy polymers. Journal of materials science letters. 6(2):137-9.
  • [38] Kinloch A, Hunston D. (1987). Effect of volume fraction of dispersed rubbery phase on the toughness of rubber-toughened epoxy polymers. Journal of materials science letters. 6(2):137-9.
  • [39] Chen J-P, Lee Y-D. (1995). A real-time study of the phase-separation process during polymerization of rubber-modified epoxy. Polymer. 36(1):55-65.
  • [39] Chen J-P, Lee Y-D. (1995). A real-time study of the phase-separation process during polymerization of rubber-modified epoxy. Polymer. 36(1):55-65.
  • [40] Kiefer J, Hilborn J, Hedrick J. (1996). Chemically induced phase separation: a new technique for the synthesis of macroporous epoxy networks. Polymer. 37(25):5715-25.
  • [40] Kiefer J, Hilborn J, Hedrick J. (1996). Chemically induced phase separation: a new technique for the synthesis of macroporous epoxy networks. Polymer. 37(25):5715-25.
  • [41] Kim DS, Kim SC. (1994). Rubber modified epoxy resin. II: Phase separation behavior. Polymer Engineering & Science. 34(21):1598-604.
  • [41] Kim DS, Kim SC. (1994). Rubber modified epoxy resin. II: Phase separation behavior. Polymer Engineering & Science. 34(21):1598-604.
There are 82 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Harun Sepetçioğlu 0000-0001-5746-4234

Publication Date September 20, 2021
Acceptance Date March 11, 2021
Published in Issue Year 2021

Cite

APA Sepetçioğlu, H. (2021). Characterization of Mechanical of CTBN Liquid Rubber‐Modified Epoxy Cured by Anhydride- and Amine-Based Agent. European Mechanical Science, 5(3), 121-129. https://doi.org/10.26701/ems.869293

Dergi TR Dizin'de Taranmaktadır.

Flag Counter