Influence of ecological Juniperus Drupacea cone powder on mechanical and physical properties of fiber-reinforced composite friction materials
Year 2022,
, 47 - 57, 20.03.2022
Sait Aras
,
Harun Sepetçioğlu
Abstract
This work is aimed to study the mechanical and physical properties of composite friction materials (CFMs) produced by using various fiber types (glass, carbon, and basalt) filled and unfilled Organic Juniperus Drupacea Cone Powder (JDCP). The CFMs were tested by using a pin-on-disc tribo-test-rig under dry contact conditions. The JDCP gradually reduced the density of CFMs. The surface hardness of the CFMs exhibited a decreasing trend with the addition of JDCP filler. The presence of JDCP within the CFMs considerably increased the water and oil absorption. The results showed that the JDCP filled and unfilled basalt fiber reinforced CFMs had higher friction coefficients than JDCP filled and unfilled glass and carbon fiber reinforced CFMs. In addition, the friction coefficient of filled and unfilled carbon fiber reinforced CFMs was found to be the lowest. The tensile strengths obtained from the indirect tensile (Brazilian) test of basalt, glass, and carbon fiber reinforced test CFMs increased with JDCP filler. In addition, the tensile strength of JDCP filled and unfilled carbon fiber reinforced FCMs proved to have better wear resistance than other all CFMs. The wear resistance of basalt, glass, and carbon fiber reinforced CFCMs decreased with the increase of JDCP wt. % filler. Among JDCP filled and unfilled all CFMs, the highest wear resistance was detected in carbon fiber reinforced CFM. The minor wear resistance was seen in glass fiber reinforced CFMs than carbon and basalt reinforced samples.
References
- [1] Majeed B, Basturk S. Analysis of polymeric composite materials for frictional wear resistance purposes. Polymers and Polymer Composites. 2020:0967391120903957.
- [2] Aras S, Tarakçıoğlu N. Optimization and assessment of brake pad production parameters and organic Juniperus drupacea cone powder additive ratio using the Taguchi method. Journal of Composite Materials. 2021:0021998321997532.
- [3] Sepetcioglu H. Characterization of Mechanical of CTBN Liquid Rubber‐Modified Epoxy Cured by Anhydride-and Amine-Based Agent. European Mechanical Science.5(3):121-9.
- [4] Kolluri D, Ghosh A, Bijwe J. Performance evaluation of composite friction materials: Influence of nature and particle size of graphite. Journal of reinforced plastics and composites. 2010;29(18):2842-54.
- [5] Xu X, Lu X, Qin Z, Yang D. Influence of silica as an abrasive on friction performance of polyimide-matrix composites. Polymers and Polymer Composites. 2017;25(1):43-8.
- [6] Cheng B, Kortschot M. A Study of the Friction Coefficients of Unidirectional and Woven Carbon Fibre/Epoxy Composites. Polymers and Polymer Composites. 2016;24(4):255-63.
- [7] De Fazio D, Boccarusso L, Durante M. Tribological Behaviour of Hemp, Glass and Carbon Fibre Composites. Biotribology. 2020;21:100113.
- [8] Etemadi H, Shojaei A, Jahanmard P. Effect of alumina nanoparticle on the tribological performance of automotive brake friction materials. Journal of Reinforced Plastics and Composites. 2014;33(2):166-78.
- [9] Unaldi M, Kus R. The effect of the brake pad components to the some physical properties of the ecological brake pad samples. IOP conference series: materials science and engineering2017. p. 012032.
- [10] Dönmez A. Asbest Dışı Elyaflarla Üretilen Balata Malzemelerinin Özelliklerinin İncelenmesi. Doktora tezi: Karadeniz Teknik Üniversitesi 2000.
- [11] Gümüş E. Otomotivde Kullanılan Kompozit Sürtünmeli Fren Balatalarında Yerli Uçucu Kül Katkısının Balata Özelliklerine Etkisinin İncelenmesi. Yüksek Lisans Tezi: Yıldız Teknik Üniversitesi; 2012.
- [12] Öztürk B, Arslan F, Öztürk S. Hot wear properties of ceramic and basalt fiber reinforced hybrid friction materials. Tribology International. 2007;40(1):37-48.
- [13] Baklouti M, Cristol A-L, Desplanques Y, Elleuch R. Impact of the glass fibers addition on tribological behavior and braking performances of organic matrix composites for brake lining. Wear. 2015;330:507-14.
- [14] Demir ME, Çelik YH, Kılıçkap E. Cam ve Karbon Elyaf Takviyeli Kompozitlerde Elyaf Cinsinin, Yükün, Kayma Hızı ve Mesafesinin Abrazif Aşınmaya Etkisi. Politeknik Dergisi. 2019.
- [15] Abutu J, Lawal S, Ndaliman M, Lafia-Araga R, Adedipe O, Choudhury I. Effects of process parameters on the properties of brake pad developed from seashell as reinforcement material using grey relational analysis. Engineering Science and Technology, an International Journal. 2018.
- [16] Afolabi M, Abubakre O, Lawal S, Raji A. Experimental investigation of palm kernel shell and cow bone reinforced polymer composites for brake pad production. International Journal of Chemistry and Materials Research. 2015;3(2):27-40.
- [17] Sugözü B. Friction and Wear Behavior of Fiber Reinforced Polymer-Matrix Composites Containing Ulexite and Pinus Brutia Cone Dust. European Mechanical Science. 2019;3(3):92-6.
- [18] Sugözü İ, Kahya K. Investigation of the Effect on Tribological Properties of the use of Pinus Brutia Cone as a Binder in Brake Pads. European Mechanical Science. 2018;2(4):115-8.
- [19] Akpınar G. Modifiye Edilmiş Karaçam Kozalaklarının Otomotiv Fren Balatalarında Kullanımının Araştırılması. Yüksek Lisans Tezi: Afyon Kocatepe Üniversitesi 2008.
- [20] Amaren S, Yawas D, Aku S. Effect of periwinkles shell particle size on the wear behavior of asbestos free brake pad. Results in Physics. 2013;3:109-14.
- [21] Idris U, Aigbodion V, Abubakar I, Nwoye C. Eco-friendly asbestos free brake-pad: Using banana peels. Journal of King Saud University-Engineering Sciences. 2015;27(2):185-92.
- [22] Kahya K. Otomotiv Fren Balatalarında Farklı Bağlayıcı Malzeme Kullanımının Frenleme Performansına Etkisinin Araştırılması. Yüksek Lisans Tezi: Mersin Üniversitesi 2017.
- [23] Sugözü B. Nano silika, nano alümina ve nano zirkon aşındırıcı parçacık katkısının fren balata özelliklerine etkisi. Fen Bilimleri Enstitüsü Doktora Tezi, Konya. 2016.
- [24] Kara F. Karbon Elyaf Takviyeli Otomotiv Fren Balata Özelliklerinin Araştırılması. Yüksek Lisans Tezi: Afyon Kocatepe Üniversitesi; 2011.
- [25] Koca M. Bazı Mineral Malzemelerin Fren Balatalarında Sürtünme Özelliklerinin Araştırılması. Yüksek Lisans Tezi: Afyon Kocatepe Üniversitesi 2011.
- [26] Lee J-J, Lee J-A, Kwon S, Kim J-J. Effect of different reinforcement materials on the formation of secondary plateaus and friction properties in friction materials for automobiles. Tribology International. 2018;120:70-9.
- [27] Kocabaş İ. Kompozit Malzemelerin Fren Balatalarında Kullanılabilirliğinin ve Frenleme Performansının Araştırılması. Yüksek Lisans Tezi: Fırat Üniversitesi; 2012.
- [28] Ikpambese K, Gundu D, Tuleun L. Evaluation of palm kernel fibers (PKFs) for production of asbestos-free automotive brake pads. Journal of King Saud University-Engineering Sciences. 2016;28(1):110-8.
- [29] Arman M, Singhal S, Chopra P, Sarkar M. A review on material and wear analysis of automotive Break Pad. Materials Today: Proceedings. 2018;5(14):28305-12.
- [30] Binda FF, de Alvarenga Oliveira V, Fortulan CA, Palhares LB, dos Santos CG. Friction elements based on phenolic resin and slate powder. Journal of Materials Research and Technology. 2020.
- [31] Taşyürek M, Aras S. Assessment of Mechanical and Thermal Properties of Juniperus Drupacea/Epoxy Biocomposite. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi.12(1):21-31.
- [32] Sait A, TARAKÇIOĞLU N. Experimental investigation of the effect of compression pressure on mechanical properties in glass fiber reinforced organic material-based brake pads production. International Advanced Researches and Engineering Journal.3(2):111-5.
- [33] Belrhiti Y, Dupre J, Pop O, Germaneau A, Doumalin P, Huger M, et al. Combination of Brazilian test and digital image correlation for mechanical characterization of refractory materials. Journal of the European Ceramic Society. 2017;37(5):2285-93.
- [34] Dai Y, Li Y, Xu X, Zhu Q, Yan W, Jin S, et al. Fracture behaviour of magnesia refractory materials in tension with the Brazilian test. Journal of the European Ceramic Society. 2019;39(16):5433-41.
- [35] Proveti JRC, Michot G. The Brazilian test: a tool for measuring the toughness of a material and its brittle to ductile transition. International journal of fracture. 2006;139(3-4):455-60.
- [36] Fairhurst C. On the validity of the ‘Brazilian’test for brittle materials. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier; 1964. p. 535-46.
- [37] Li D, Wong LNY. The Brazilian disc test for rock mechanics applications: review and new insights. Rock mechanics and rock engineering. 2013;46(2):269-87.
- [38] Akinci I, Ozdemir F, Topuz A, Kabas O, Canakci M. Some physical and nutritional properties of Juniperus drupacea fruits. Journal of Food Engineering. 2004;65(3):325-31.
- [39] Hendre K, Bachchhav B. Tribological behaviour of non-asbestos brake pad material. Materials Today: Proceedings. 2020.
- [40] Moses AJ, Babu AS, Kumar SA. Analysis of physical properties and wear behavior of phenol formaldehyde–Basalt fiber reinforced brake pad. Materials Today: Proceedings. 2020;33:1128-32.
- [41] Quinn T. Oxidational wear. Wear. 1971;18(5):413-9.
- [42] Natarajan N, Vijayarangan S, Rajendran I. Wear behaviour of A356/25SiCp aluminium matrix composites sliding against automobile friction material. Wear. 2006;261(7-8):812-22.
- [43] Aras S. Investigation of the use of organic material based hybrid friction composites in pad production [Doctoral Thesis]. Selçuk University2019.
Year 2022,
, 47 - 57, 20.03.2022
Sait Aras
,
Harun Sepetçioğlu
References
- [1] Majeed B, Basturk S. Analysis of polymeric composite materials for frictional wear resistance purposes. Polymers and Polymer Composites. 2020:0967391120903957.
- [2] Aras S, Tarakçıoğlu N. Optimization and assessment of brake pad production parameters and organic Juniperus drupacea cone powder additive ratio using the Taguchi method. Journal of Composite Materials. 2021:0021998321997532.
- [3] Sepetcioglu H. Characterization of Mechanical of CTBN Liquid Rubber‐Modified Epoxy Cured by Anhydride-and Amine-Based Agent. European Mechanical Science.5(3):121-9.
- [4] Kolluri D, Ghosh A, Bijwe J. Performance evaluation of composite friction materials: Influence of nature and particle size of graphite. Journal of reinforced plastics and composites. 2010;29(18):2842-54.
- [5] Xu X, Lu X, Qin Z, Yang D. Influence of silica as an abrasive on friction performance of polyimide-matrix composites. Polymers and Polymer Composites. 2017;25(1):43-8.
- [6] Cheng B, Kortschot M. A Study of the Friction Coefficients of Unidirectional and Woven Carbon Fibre/Epoxy Composites. Polymers and Polymer Composites. 2016;24(4):255-63.
- [7] De Fazio D, Boccarusso L, Durante M. Tribological Behaviour of Hemp, Glass and Carbon Fibre Composites. Biotribology. 2020;21:100113.
- [8] Etemadi H, Shojaei A, Jahanmard P. Effect of alumina nanoparticle on the tribological performance of automotive brake friction materials. Journal of Reinforced Plastics and Composites. 2014;33(2):166-78.
- [9] Unaldi M, Kus R. The effect of the brake pad components to the some physical properties of the ecological brake pad samples. IOP conference series: materials science and engineering2017. p. 012032.
- [10] Dönmez A. Asbest Dışı Elyaflarla Üretilen Balata Malzemelerinin Özelliklerinin İncelenmesi. Doktora tezi: Karadeniz Teknik Üniversitesi 2000.
- [11] Gümüş E. Otomotivde Kullanılan Kompozit Sürtünmeli Fren Balatalarında Yerli Uçucu Kül Katkısının Balata Özelliklerine Etkisinin İncelenmesi. Yüksek Lisans Tezi: Yıldız Teknik Üniversitesi; 2012.
- [12] Öztürk B, Arslan F, Öztürk S. Hot wear properties of ceramic and basalt fiber reinforced hybrid friction materials. Tribology International. 2007;40(1):37-48.
- [13] Baklouti M, Cristol A-L, Desplanques Y, Elleuch R. Impact of the glass fibers addition on tribological behavior and braking performances of organic matrix composites for brake lining. Wear. 2015;330:507-14.
- [14] Demir ME, Çelik YH, Kılıçkap E. Cam ve Karbon Elyaf Takviyeli Kompozitlerde Elyaf Cinsinin, Yükün, Kayma Hızı ve Mesafesinin Abrazif Aşınmaya Etkisi. Politeknik Dergisi. 2019.
- [15] Abutu J, Lawal S, Ndaliman M, Lafia-Araga R, Adedipe O, Choudhury I. Effects of process parameters on the properties of brake pad developed from seashell as reinforcement material using grey relational analysis. Engineering Science and Technology, an International Journal. 2018.
- [16] Afolabi M, Abubakre O, Lawal S, Raji A. Experimental investigation of palm kernel shell and cow bone reinforced polymer composites for brake pad production. International Journal of Chemistry and Materials Research. 2015;3(2):27-40.
- [17] Sugözü B. Friction and Wear Behavior of Fiber Reinforced Polymer-Matrix Composites Containing Ulexite and Pinus Brutia Cone Dust. European Mechanical Science. 2019;3(3):92-6.
- [18] Sugözü İ, Kahya K. Investigation of the Effect on Tribological Properties of the use of Pinus Brutia Cone as a Binder in Brake Pads. European Mechanical Science. 2018;2(4):115-8.
- [19] Akpınar G. Modifiye Edilmiş Karaçam Kozalaklarının Otomotiv Fren Balatalarında Kullanımının Araştırılması. Yüksek Lisans Tezi: Afyon Kocatepe Üniversitesi 2008.
- [20] Amaren S, Yawas D, Aku S. Effect of periwinkles shell particle size on the wear behavior of asbestos free brake pad. Results in Physics. 2013;3:109-14.
- [21] Idris U, Aigbodion V, Abubakar I, Nwoye C. Eco-friendly asbestos free brake-pad: Using banana peels. Journal of King Saud University-Engineering Sciences. 2015;27(2):185-92.
- [22] Kahya K. Otomotiv Fren Balatalarında Farklı Bağlayıcı Malzeme Kullanımının Frenleme Performansına Etkisinin Araştırılması. Yüksek Lisans Tezi: Mersin Üniversitesi 2017.
- [23] Sugözü B. Nano silika, nano alümina ve nano zirkon aşındırıcı parçacık katkısının fren balata özelliklerine etkisi. Fen Bilimleri Enstitüsü Doktora Tezi, Konya. 2016.
- [24] Kara F. Karbon Elyaf Takviyeli Otomotiv Fren Balata Özelliklerinin Araştırılması. Yüksek Lisans Tezi: Afyon Kocatepe Üniversitesi; 2011.
- [25] Koca M. Bazı Mineral Malzemelerin Fren Balatalarında Sürtünme Özelliklerinin Araştırılması. Yüksek Lisans Tezi: Afyon Kocatepe Üniversitesi 2011.
- [26] Lee J-J, Lee J-A, Kwon S, Kim J-J. Effect of different reinforcement materials on the formation of secondary plateaus and friction properties in friction materials for automobiles. Tribology International. 2018;120:70-9.
- [27] Kocabaş İ. Kompozit Malzemelerin Fren Balatalarında Kullanılabilirliğinin ve Frenleme Performansının Araştırılması. Yüksek Lisans Tezi: Fırat Üniversitesi; 2012.
- [28] Ikpambese K, Gundu D, Tuleun L. Evaluation of palm kernel fibers (PKFs) for production of asbestos-free automotive brake pads. Journal of King Saud University-Engineering Sciences. 2016;28(1):110-8.
- [29] Arman M, Singhal S, Chopra P, Sarkar M. A review on material and wear analysis of automotive Break Pad. Materials Today: Proceedings. 2018;5(14):28305-12.
- [30] Binda FF, de Alvarenga Oliveira V, Fortulan CA, Palhares LB, dos Santos CG. Friction elements based on phenolic resin and slate powder. Journal of Materials Research and Technology. 2020.
- [31] Taşyürek M, Aras S. Assessment of Mechanical and Thermal Properties of Juniperus Drupacea/Epoxy Biocomposite. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi.12(1):21-31.
- [32] Sait A, TARAKÇIOĞLU N. Experimental investigation of the effect of compression pressure on mechanical properties in glass fiber reinforced organic material-based brake pads production. International Advanced Researches and Engineering Journal.3(2):111-5.
- [33] Belrhiti Y, Dupre J, Pop O, Germaneau A, Doumalin P, Huger M, et al. Combination of Brazilian test and digital image correlation for mechanical characterization of refractory materials. Journal of the European Ceramic Society. 2017;37(5):2285-93.
- [34] Dai Y, Li Y, Xu X, Zhu Q, Yan W, Jin S, et al. Fracture behaviour of magnesia refractory materials in tension with the Brazilian test. Journal of the European Ceramic Society. 2019;39(16):5433-41.
- [35] Proveti JRC, Michot G. The Brazilian test: a tool for measuring the toughness of a material and its brittle to ductile transition. International journal of fracture. 2006;139(3-4):455-60.
- [36] Fairhurst C. On the validity of the ‘Brazilian’test for brittle materials. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier; 1964. p. 535-46.
- [37] Li D, Wong LNY. The Brazilian disc test for rock mechanics applications: review and new insights. Rock mechanics and rock engineering. 2013;46(2):269-87.
- [38] Akinci I, Ozdemir F, Topuz A, Kabas O, Canakci M. Some physical and nutritional properties of Juniperus drupacea fruits. Journal of Food Engineering. 2004;65(3):325-31.
- [39] Hendre K, Bachchhav B. Tribological behaviour of non-asbestos brake pad material. Materials Today: Proceedings. 2020.
- [40] Moses AJ, Babu AS, Kumar SA. Analysis of physical properties and wear behavior of phenol formaldehyde–Basalt fiber reinforced brake pad. Materials Today: Proceedings. 2020;33:1128-32.
- [41] Quinn T. Oxidational wear. Wear. 1971;18(5):413-9.
- [42] Natarajan N, Vijayarangan S, Rajendran I. Wear behaviour of A356/25SiCp aluminium matrix composites sliding against automobile friction material. Wear. 2006;261(7-8):812-22.
- [43] Aras S. Investigation of the use of organic material based hybrid friction composites in pad production [Doctoral Thesis]. Selçuk University2019.