Research Article
BibTex RIS Cite

Comparative Analysis of Ejector Refrigeration System Powered with Engine Exhaust Heat using R134a and R245fa

Year 2019, Volume: 3 Issue: 1, 13 - 17, 20.03.2019
https://doi.org/10.26701/ems.430831

Abstract

An ejector refrigeration (ER) system
using exhaust waste heat of a heavy vehicle engine is investigated. A program
is developed using engineering equation solver software and it is used to make
the calculations of the system. The system is taking all the efficiencies of
system’s components into account. Refrigerants R134a and R245fa are used for
the comparative simulation of the system. The pressure at the exit of the pump
is varied from 6 to 14 MPa and 3 to 10 MPa for R134a and R245fa, respectively.
It can be concluded that COP (coefficient of performance) of the system
gradually increases with the increase in pump exit pressure. Results show that,
the performance of the system would be higher if R245fa is preferred rather
than R134a with the given operating conditions. 

References

  • Zhao R., Zhuge W., Zhang Y., Yin Y., Chen Z., and Li Z. (2014) “Parametric study of power turbine for diesel engine waste heat recovery,” Appl. Therm. Eng., vol. 67, no. 1–2, pp. 308–319, 10.1016/j.applthermaleng.2014.03.032.
  • Dong J., Yu M., Wang W., Song H., Li C., and Pan X. (2017) “Experimental investigation on low-temperature thermal energy driven steam ejector refrigeration system for cooling application, Applied Thermal Energy., vol. 123, pp, 167-176, 10.1016/j.applthermaleng.2017.05.061.
  • Chen G., Volovyk O., Ierin V., and Shestopalov K., (2017) “Performance analysis of a two-stage mechanical compression–ejector cooling cycle intended for micro-trigeneration system,” Int. J. Refrig., vol. 81, pp. 33–40, 10.1016/j.ijrefrig.2017.05.018.
  • Ünal Ş., Erdinç M. T., and Kutlu Ç. (2017) “Optimal thermodynamic parameters of two-phase ejector refrigeration system for buses,” Appl. Therm. Eng., vol. 124, pp. 1354–1367, 10.1016/j.applthermaleng.2017.06.115.
  • Khaliq A., (2015) “Performance analysis of a waste-heat-powered thermodynamic cycle for multieffect refrigeration,” Int. J. Energy Res., vol. 39, no. 4, pp. 529–542, 10.1002/er.3269.
  • Zhang H., Wang L., Yan J., Li X., and Wang L., (2017) “Performance investigation of a novel EEV-based ejector for refrigerator- freezers,” Appl. Therm. Eng., vol. 121, pp. 336–343, 10.1016/j.applthermaleng.2017.04.081.
  • Aly N. H., Karameldin A., and Shamloul M. M., (1999) “Modelling and simulation of steam jet ejectors,” Desalination, vol. 123, no. 1, pp. 1–8, 10.1016/S0011-9164(99)00053-3.
  • Cizungu K., Mani A., and Groll M., (2011) “Performance comparison of vapour jet refrigeration system with environment friendly working fluids,” Appl. Therm. Eng., vol. 21, no. 5, pp. 585–598, 10.1016/S1359-4311(00)00070-3.
  • Dai Y., Wang J., and Gao L., (2009) “Exergy analysis, parametric analysis and optimization for a novel combined power and ejector refrigeration cycle,” Appl. Therm. Eng., vol. 29, no. 10, pp. 1983–1990, 10.1016/j.applthermaleng.2008.09.016.
  • Eames I. W., Aphornratana S., and Haider H., (1995) “A theoretical and experimental study of a small-scale steam jet refrigerator,” Int. J. Refrig., vol. 18, no. 6, pp. 378–386, 10.1016/0140-7007(95)98160-m.
  • Grazzini G., Milazzo A., and Paganini D., (2012) “Design of an ejector cycle refrigeration system,” Energy Convers. Manag., vol. 54, no. 1, pp. 38–46, 10.1016/j.enconman.2011.09.015.
  • Sun D.W., (1999) “Comparative study of the performance of an ejector refrigeration cycle operating with various refrigerants,” Energy Convers. Manag., vol. 40, no. 8, pp. 873–884, 10.1016/s0196-8904(98)00151-4.
  • Varga S., Oliveira A. C., and Diaconu B., (2009) “Numerical assessment of steam ejector efficiencies using CFD,” Int. J. Refrig., vol. 32, no. 6, pp. 1203–1211, 10.1016/j.ijrefrig.2009.01.007.
  • Yu J.and Du Z., (2010) “Theoretical study of a transcritical ejector refrigeration cycle with refrigerant R143a,” Renew. Energy, vol. 35, no. 9, pp. 2034–2039, 10.1016/j.renene.2010.02.004.
  • Habibzadeh A., Rashidi M. M., and Galanis N., (2013) “Analysis of a combined power and ejector-refrigeration cycle using low temperature heat,” Energy Convers. Manag., vol. 65, pp. 381–391, 10.1016/j.enconman.2012.08.020.
  • Little A. B. and Garimella S., (2011) “Comparative assessment of alternative cycles for waste heat recovery and upgrade,” Energy, vol. 36, no. 7, pp. 4492–4504, 10.1016/j.energy.2011.03.069.
  • Peris B., Navarro-Esbrí J., and Molés F., (2013) “Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery,” Appl. Therm. Eng., vol. 61, no. 2, pp. 364–371, 10.1016/j.applthermaleng.2013.08.016.
  • Wang H., Peterson R., and Herron T., (2011) “Design study of configurations on system COP for a combined ORC (organic Rankine cycle) and VCC (vapor compression cycle),” Energy, vol. 36, no. 8, pp. 4809–4820, 10.1016/j.energy.2011.05.015.
  • ASHRAE Handbook (2007) Heating, Ventilating, and Air-Conditioning Applications (I-P Edition) - Knovel.
  • Arora R. C., (2010) Refrigeration and air conditioning.
  • Çengel Y. A. and Boles M. A., (2008) Thermodynamics : an engineering approach.
  • Wang F., Shen S. Q., and Li D. Y., (2015) “Evaluation on environment-friendly refrigerants with similar normal boiling points in ejector refrigeration system,” Heat Mass Transf., vol. 51, no. 7, pp. 965–972, 10.1007/s00231-014-1468-0.
  • Armstead J. R. and Miers S. A., (2010) “Review of Waste Heat Recovery Mechanisms for Internal Combustion Engines,” Proc. Asme Intern. Combust. Engine Div. Fall Tech. Conf., vol. 6, no. March 2014, pp. 965–974, 10.1115/1.4024882.
Year 2019, Volume: 3 Issue: 1, 13 - 17, 20.03.2019
https://doi.org/10.26701/ems.430831

Abstract

References

  • Zhao R., Zhuge W., Zhang Y., Yin Y., Chen Z., and Li Z. (2014) “Parametric study of power turbine for diesel engine waste heat recovery,” Appl. Therm. Eng., vol. 67, no. 1–2, pp. 308–319, 10.1016/j.applthermaleng.2014.03.032.
  • Dong J., Yu M., Wang W., Song H., Li C., and Pan X. (2017) “Experimental investigation on low-temperature thermal energy driven steam ejector refrigeration system for cooling application, Applied Thermal Energy., vol. 123, pp, 167-176, 10.1016/j.applthermaleng.2017.05.061.
  • Chen G., Volovyk O., Ierin V., and Shestopalov K., (2017) “Performance analysis of a two-stage mechanical compression–ejector cooling cycle intended for micro-trigeneration system,” Int. J. Refrig., vol. 81, pp. 33–40, 10.1016/j.ijrefrig.2017.05.018.
  • Ünal Ş., Erdinç M. T., and Kutlu Ç. (2017) “Optimal thermodynamic parameters of two-phase ejector refrigeration system for buses,” Appl. Therm. Eng., vol. 124, pp. 1354–1367, 10.1016/j.applthermaleng.2017.06.115.
  • Khaliq A., (2015) “Performance analysis of a waste-heat-powered thermodynamic cycle for multieffect refrigeration,” Int. J. Energy Res., vol. 39, no. 4, pp. 529–542, 10.1002/er.3269.
  • Zhang H., Wang L., Yan J., Li X., and Wang L., (2017) “Performance investigation of a novel EEV-based ejector for refrigerator- freezers,” Appl. Therm. Eng., vol. 121, pp. 336–343, 10.1016/j.applthermaleng.2017.04.081.
  • Aly N. H., Karameldin A., and Shamloul M. M., (1999) “Modelling and simulation of steam jet ejectors,” Desalination, vol. 123, no. 1, pp. 1–8, 10.1016/S0011-9164(99)00053-3.
  • Cizungu K., Mani A., and Groll M., (2011) “Performance comparison of vapour jet refrigeration system with environment friendly working fluids,” Appl. Therm. Eng., vol. 21, no. 5, pp. 585–598, 10.1016/S1359-4311(00)00070-3.
  • Dai Y., Wang J., and Gao L., (2009) “Exergy analysis, parametric analysis and optimization for a novel combined power and ejector refrigeration cycle,” Appl. Therm. Eng., vol. 29, no. 10, pp. 1983–1990, 10.1016/j.applthermaleng.2008.09.016.
  • Eames I. W., Aphornratana S., and Haider H., (1995) “A theoretical and experimental study of a small-scale steam jet refrigerator,” Int. J. Refrig., vol. 18, no. 6, pp. 378–386, 10.1016/0140-7007(95)98160-m.
  • Grazzini G., Milazzo A., and Paganini D., (2012) “Design of an ejector cycle refrigeration system,” Energy Convers. Manag., vol. 54, no. 1, pp. 38–46, 10.1016/j.enconman.2011.09.015.
  • Sun D.W., (1999) “Comparative study of the performance of an ejector refrigeration cycle operating with various refrigerants,” Energy Convers. Manag., vol. 40, no. 8, pp. 873–884, 10.1016/s0196-8904(98)00151-4.
  • Varga S., Oliveira A. C., and Diaconu B., (2009) “Numerical assessment of steam ejector efficiencies using CFD,” Int. J. Refrig., vol. 32, no. 6, pp. 1203–1211, 10.1016/j.ijrefrig.2009.01.007.
  • Yu J.and Du Z., (2010) “Theoretical study of a transcritical ejector refrigeration cycle with refrigerant R143a,” Renew. Energy, vol. 35, no. 9, pp. 2034–2039, 10.1016/j.renene.2010.02.004.
  • Habibzadeh A., Rashidi M. M., and Galanis N., (2013) “Analysis of a combined power and ejector-refrigeration cycle using low temperature heat,” Energy Convers. Manag., vol. 65, pp. 381–391, 10.1016/j.enconman.2012.08.020.
  • Little A. B. and Garimella S., (2011) “Comparative assessment of alternative cycles for waste heat recovery and upgrade,” Energy, vol. 36, no. 7, pp. 4492–4504, 10.1016/j.energy.2011.03.069.
  • Peris B., Navarro-Esbrí J., and Molés F., (2013) “Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery,” Appl. Therm. Eng., vol. 61, no. 2, pp. 364–371, 10.1016/j.applthermaleng.2013.08.016.
  • Wang H., Peterson R., and Herron T., (2011) “Design study of configurations on system COP for a combined ORC (organic Rankine cycle) and VCC (vapor compression cycle),” Energy, vol. 36, no. 8, pp. 4809–4820, 10.1016/j.energy.2011.05.015.
  • ASHRAE Handbook (2007) Heating, Ventilating, and Air-Conditioning Applications (I-P Edition) - Knovel.
  • Arora R. C., (2010) Refrigeration and air conditioning.
  • Çengel Y. A. and Boles M. A., (2008) Thermodynamics : an engineering approach.
  • Wang F., Shen S. Q., and Li D. Y., (2015) “Evaluation on environment-friendly refrigerants with similar normal boiling points in ejector refrigeration system,” Heat Mass Transf., vol. 51, no. 7, pp. 965–972, 10.1007/s00231-014-1468-0.
  • Armstead J. R. and Miers S. A., (2010) “Review of Waste Heat Recovery Mechanisms for Internal Combustion Engines,” Proc. Asme Intern. Combust. Engine Div. Fall Tech. Conf., vol. 6, no. March 2014, pp. 965–974, 10.1115/1.4024882.
There are 23 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Alper Yılmaz This is me

Arif Emre Aktaş This is me

Publication Date March 20, 2019
Acceptance Date November 20, 2018
Published in Issue Year 2019 Volume: 3 Issue: 1

Cite

APA Yılmaz, A., & Aktaş, A. E. (2019). Comparative Analysis of Ejector Refrigeration System Powered with Engine Exhaust Heat using R134a and R245fa. European Mechanical Science, 3(1), 13-17. https://doi.org/10.26701/ems.430831

Dergi TR Dizin'de Taranmaktadır.

Flag Counter