Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 3 Sayı: 4, 142 - 146, 20.12.2019
https://doi.org/10.26701/ems.646610

Öz

Kaynakça

  • Higgins, A., (2000). Adhesive bonding of aircraft structures. International Journal of Adhesion and Adhesives 20(5): 367–76, Doi: 10.1016/S0143-7496(00)00006-3.
  • Edwards, K.., (1998). A brief insight into the selection and use of engineering adhesives for preliminary joint design. Materials & Design 19(3): 121–3, Doi: 10.1016/S0261-3069(98)00011-9.
  • Grant, L.D.R., Adams, R.D., da Silva, L.F.M., (2009). Experimental and numerical analysis of single-lap joints for the automotive industry. International Journal of Adhesion and Adhesives 29(4): 405–13, Doi: 10.1016/j.ijadhadh.2008.09.001.
  • Goland, M., Reissner, E., (1944). The stresses in cemented joints. Journal of Applied Mechanics 66: 17–27. Srinivas, S.R., (1975). Analysis of bonded joints. vol. NASA TN D-.
  • Tong, L., (1998). Strength of adhesively bonded single-lap and lap-shear joints. International Journal of Solids and Structures 35(20): 2601–16, Doi: 10.1016/S0020-7683(97)00174-1.
  • Adams, R.D., Peppiatt, N.A., (1973). Effect of poisson’s ratio strains in adherends on stresses of an idealized lap joint. Journal of Strain Analysis 8(2): 134–9, Doi: 10.1243/03093247V082134.
  • Adams, R.D., Peppiatt, n. a., (1974). Stress analysis of adhesive-bonded lap joints. Journal of Strain Analysis 9(3): 185–96, Doi: 10.1243/03093247V093185.
  • Chen, D., Cheng, S., (1983). An Analysis of Adhesive-Bonded Single-Lap Joints. Journal of Applied Mechanics 50(1): 109–15, Doi: 10.1115/1.3166976.
  • Odi, R.A., Friend, C.M., (2004). An improved 2D model for bonded composite joints. International Journal of Adhesion and Adhesives 24(5): 389–405, Doi: 10.1016/j.ijadhadh.2001.06.001.
  • Akpınar, S., (2019). The Effect of Adherend Thickness and Width on Fracture Behavior in Adhesively bonded Double Cantilever Beam Joints. European Mechanical Science 3(3): 83–7, Doi: 10.26701/ems.566773.
  • Narasimhan, R., Biswas, S.K., (1998). A finite element study of the indentation mechanics of an adhesively bonded layered solid. International Journal of Mechanical Sciences 40(4): 357–70, Doi: 10.1016/S0020-7403(97)00038-6.
  • Harris, J.A., Adams, R.A., (1984). Strength prediction of bonded single lap joints by non-linear finite element methods. International Journal of Adhesion and Adhesives 4(2): 65–78, Doi: 10.1016/0143-7496(84)90103-9.
  • Carpenter, W.C., Barsoum, R., (1989). Two Finite Elements for Modeling the Adhesive in Bonded Configurations. The Journal of Adhesion 30(1–4): 25–46, Doi: 10.1080/00218468908048192.
  • Sheppard, A., Kelly, D., Tong, L., (1998). A damage zone model for the failure analysis of adhesively bonded joints. International Journal of Adhesion and Adhesives 18(6): 385–400, Doi: 10.1016/S0143-7496(98)00024-4.
  • Andruet, R.H., Dillard, D.A., Holzer, S.M., (2001). Two- and three-dimensional geometrical nonlinear finite elements for analysis of adhesive joints. International Journal of Adhesion and Adhesives 21(1): 17–34, Doi: 10.1016/S0143-7496(00)00024-5.
  • Marcolefas, S., Kostopoulos, V., Paipetis, S.A., (1991). Non-linear analysis of a metal-to-composite scarf joint. International Journal of Mechanical Sciences 33(12): 961–73, Doi: 10.1016/0020-7403(91)90052-5.
  • Apalak, M.K., Engin, A., (2003). An investigation on the initiation and propagation of damaged zones in adhesively bonded lap joints. Journal of Adhesion Science and Technology 17(14): 1889–921, Doi: 10.1163/156856103770572043.
  • Magalhães, A.G., de Moura, M.F.S.F., Gonçalves, J.P.M., (2005). Evaluation of stress concentration effects in single-lap bonded joints of laminate composite materials. International Journal of Adhesion and Adhesives 25(4): 313–9, Doi: 10.1016/j.ijadhadh.2004.10.002.
  • Li, W., Zhou, S., Shi, Z., Wang, X., Hu, P., (2017). Experimental and numerical analysis on fatigue durability of single-lap joints under vibration loads. The Journal of Adhesion 93(3): 187–203, Doi: 10.1080/00218464.2014.914927.
  • Georgiou, I., Hadavinia, H., Ivankovic, A., Kinloch, A.J., Tropsa, V., Williams, J.G., (2003). Cohesive zone models and the plastically deforming peel test. The Journal of Adhesion 79(3): 239–65, Doi: 10.1080/00218460309555.
  • Xu, Q., Nian, G., Shan, Y., Qu, S., Peng, H.-X., (2016). Numerical investigation on the loading-delamination-unloading behavior of adhesive joints. Composites Part A: Applied Science and Manufacturing 90: 45–50, Doi: 10.1016/j.compositesa.2016.06.021.
  • Luo, H., Yan, Y., Zhang, T., Liang, Z., (2016). Progressive failure and experimental study of adhesively bonded composite single-lap joints subjected to axial tensile loads. Journal of Adhesion Science and Technology 30(8): 894–914, Doi: 10.1080/01694243.2015.1131806.
  • Ribeiro, T.E.A., Campilho, R.D.S.G., da Silva, L.F.M., Goglio, L., (2016). Damage analysis of composite–aluminium adhesively-bonded single-lap joints. Composite Structures 136: 25–33, Doi: 10.1016/j.compstruct.2015.09.054.
  • Campilho, R.D.S.G., Pinto, A.M.G., Banea, M.D., Da Silva, L.F.M., (2012). Optimization study of hybrid spot-welded/bonded single-lap joints. International Journal of Adhesion and Adhesives 37: 86–95, Doi: 10.1016/j.ijadhadh.2012.01.018.
  • Campilho, R.D.S.G., Banea, M.D., Pinto, A.M.G., da Silva, L.F.M., de Jesus, A.M.P., (2011). Strength prediction of single- and double-lap joints by standard and extended finite element modelling. International Journal of Adhesion and Adhesives 31(5): 363–72, Doi: 10.1016/j.ijadhadh.2010.09.008.
  • Campilho, R.D.S.G., Banea, M.D., Neto, J.A.B.P., da Silva, L.F.M., (2013). Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. International Journal of Adhesion and Adhesives 44: 48–56, Doi: 10.1016/j.ijadhadh.2013.02.006.
  • Gültekin, K., Akpinar, S., Özel, A., (2015). The Effect of Moment and Flexural Rigidity of Adherend on the Strength of Adhesively Bonded Single Lap Joints. The Journal of Adhesion 91(8): 637–50, Doi: 10.1080/00218464.2014.953674.

Effect of Extensometer Usage on Obtaining the Force-Displacement Curve of the Adhesively Single Lap Joint

Yıl 2019, Cilt: 3 Sayı: 4, 142 - 146, 20.12.2019
https://doi.org/10.26701/ems.646610

Öz

Structural adhesively
bonded joints are frequently used in many areas spearheaded by the industries
such as automotive, marine space, and aviation due to the great advantages they
provide. Besides, load capacities of adhesively bonded joints which have
different geometries, are generally determined experimentally. Being compatible
of experimental and numerical analysis of adhesively bonded joints in the means
of both load carrying capacity and displacement has a great importance. But,
one of the most common problems in comparison of experimental and numerical
analyses is in spite of the coherence of experimental and numerical analyses in
load carrying capacity, it is observed that in the means of the displacement
analysis, there is incompatibility between those analyses. In the present study,
force-displacement curves of the single-lap cohesively bonded joints are
obtained experimentally by using both strokes of two different tensile test
machines which have identical calibrated load cells and video extensometer.
Experimentally obtained result was compared with numerical analysis. In the
experiments, AA2024-T3 aluminium and two-component Araldite 2015 were used as
adherend and adhesive, respectively. As a result, there is considerable
difference between the force-displacement curves of the single-lap overlap
joints which obtained experimentally from stroke and video extensometer. Also,
being new or old of the tensile test machines which have identical calibrated
load cells varies the displacement curve of the joint. When the experimental
data were compared with the results of the numerical analysis, it is concluded
that, obtaining the force-displacement curves of joints by using video
extensometer is more accurate.

Kaynakça

  • Higgins, A., (2000). Adhesive bonding of aircraft structures. International Journal of Adhesion and Adhesives 20(5): 367–76, Doi: 10.1016/S0143-7496(00)00006-3.
  • Edwards, K.., (1998). A brief insight into the selection and use of engineering adhesives for preliminary joint design. Materials & Design 19(3): 121–3, Doi: 10.1016/S0261-3069(98)00011-9.
  • Grant, L.D.R., Adams, R.D., da Silva, L.F.M., (2009). Experimental and numerical analysis of single-lap joints for the automotive industry. International Journal of Adhesion and Adhesives 29(4): 405–13, Doi: 10.1016/j.ijadhadh.2008.09.001.
  • Goland, M., Reissner, E., (1944). The stresses in cemented joints. Journal of Applied Mechanics 66: 17–27. Srinivas, S.R., (1975). Analysis of bonded joints. vol. NASA TN D-.
  • Tong, L., (1998). Strength of adhesively bonded single-lap and lap-shear joints. International Journal of Solids and Structures 35(20): 2601–16, Doi: 10.1016/S0020-7683(97)00174-1.
  • Adams, R.D., Peppiatt, N.A., (1973). Effect of poisson’s ratio strains in adherends on stresses of an idealized lap joint. Journal of Strain Analysis 8(2): 134–9, Doi: 10.1243/03093247V082134.
  • Adams, R.D., Peppiatt, n. a., (1974). Stress analysis of adhesive-bonded lap joints. Journal of Strain Analysis 9(3): 185–96, Doi: 10.1243/03093247V093185.
  • Chen, D., Cheng, S., (1983). An Analysis of Adhesive-Bonded Single-Lap Joints. Journal of Applied Mechanics 50(1): 109–15, Doi: 10.1115/1.3166976.
  • Odi, R.A., Friend, C.M., (2004). An improved 2D model for bonded composite joints. International Journal of Adhesion and Adhesives 24(5): 389–405, Doi: 10.1016/j.ijadhadh.2001.06.001.
  • Akpınar, S., (2019). The Effect of Adherend Thickness and Width on Fracture Behavior in Adhesively bonded Double Cantilever Beam Joints. European Mechanical Science 3(3): 83–7, Doi: 10.26701/ems.566773.
  • Narasimhan, R., Biswas, S.K., (1998). A finite element study of the indentation mechanics of an adhesively bonded layered solid. International Journal of Mechanical Sciences 40(4): 357–70, Doi: 10.1016/S0020-7403(97)00038-6.
  • Harris, J.A., Adams, R.A., (1984). Strength prediction of bonded single lap joints by non-linear finite element methods. International Journal of Adhesion and Adhesives 4(2): 65–78, Doi: 10.1016/0143-7496(84)90103-9.
  • Carpenter, W.C., Barsoum, R., (1989). Two Finite Elements for Modeling the Adhesive in Bonded Configurations. The Journal of Adhesion 30(1–4): 25–46, Doi: 10.1080/00218468908048192.
  • Sheppard, A., Kelly, D., Tong, L., (1998). A damage zone model for the failure analysis of adhesively bonded joints. International Journal of Adhesion and Adhesives 18(6): 385–400, Doi: 10.1016/S0143-7496(98)00024-4.
  • Andruet, R.H., Dillard, D.A., Holzer, S.M., (2001). Two- and three-dimensional geometrical nonlinear finite elements for analysis of adhesive joints. International Journal of Adhesion and Adhesives 21(1): 17–34, Doi: 10.1016/S0143-7496(00)00024-5.
  • Marcolefas, S., Kostopoulos, V., Paipetis, S.A., (1991). Non-linear analysis of a metal-to-composite scarf joint. International Journal of Mechanical Sciences 33(12): 961–73, Doi: 10.1016/0020-7403(91)90052-5.
  • Apalak, M.K., Engin, A., (2003). An investigation on the initiation and propagation of damaged zones in adhesively bonded lap joints. Journal of Adhesion Science and Technology 17(14): 1889–921, Doi: 10.1163/156856103770572043.
  • Magalhães, A.G., de Moura, M.F.S.F., Gonçalves, J.P.M., (2005). Evaluation of stress concentration effects in single-lap bonded joints of laminate composite materials. International Journal of Adhesion and Adhesives 25(4): 313–9, Doi: 10.1016/j.ijadhadh.2004.10.002.
  • Li, W., Zhou, S., Shi, Z., Wang, X., Hu, P., (2017). Experimental and numerical analysis on fatigue durability of single-lap joints under vibration loads. The Journal of Adhesion 93(3): 187–203, Doi: 10.1080/00218464.2014.914927.
  • Georgiou, I., Hadavinia, H., Ivankovic, A., Kinloch, A.J., Tropsa, V., Williams, J.G., (2003). Cohesive zone models and the plastically deforming peel test. The Journal of Adhesion 79(3): 239–65, Doi: 10.1080/00218460309555.
  • Xu, Q., Nian, G., Shan, Y., Qu, S., Peng, H.-X., (2016). Numerical investigation on the loading-delamination-unloading behavior of adhesive joints. Composites Part A: Applied Science and Manufacturing 90: 45–50, Doi: 10.1016/j.compositesa.2016.06.021.
  • Luo, H., Yan, Y., Zhang, T., Liang, Z., (2016). Progressive failure and experimental study of adhesively bonded composite single-lap joints subjected to axial tensile loads. Journal of Adhesion Science and Technology 30(8): 894–914, Doi: 10.1080/01694243.2015.1131806.
  • Ribeiro, T.E.A., Campilho, R.D.S.G., da Silva, L.F.M., Goglio, L., (2016). Damage analysis of composite–aluminium adhesively-bonded single-lap joints. Composite Structures 136: 25–33, Doi: 10.1016/j.compstruct.2015.09.054.
  • Campilho, R.D.S.G., Pinto, A.M.G., Banea, M.D., Da Silva, L.F.M., (2012). Optimization study of hybrid spot-welded/bonded single-lap joints. International Journal of Adhesion and Adhesives 37: 86–95, Doi: 10.1016/j.ijadhadh.2012.01.018.
  • Campilho, R.D.S.G., Banea, M.D., Pinto, A.M.G., da Silva, L.F.M., de Jesus, A.M.P., (2011). Strength prediction of single- and double-lap joints by standard and extended finite element modelling. International Journal of Adhesion and Adhesives 31(5): 363–72, Doi: 10.1016/j.ijadhadh.2010.09.008.
  • Campilho, R.D.S.G., Banea, M.D., Neto, J.A.B.P., da Silva, L.F.M., (2013). Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. International Journal of Adhesion and Adhesives 44: 48–56, Doi: 10.1016/j.ijadhadh.2013.02.006.
  • Gültekin, K., Akpinar, S., Özel, A., (2015). The Effect of Moment and Flexural Rigidity of Adherend on the Strength of Adhesively Bonded Single Lap Joints. The Journal of Adhesion 91(8): 637–50, Doi: 10.1080/00218464.2014.953674.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Research Article
Yazarlar

Ahmet Çalık 0000-0001-7425-4546

Salih Akpınar 0000-0003-3247-991X

Yayımlanma Tarihi 20 Aralık 2019
Kabul Tarihi 29 Kasım 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 3 Sayı: 4

Kaynak Göster

APA Çalık, A., & Akpınar, S. (2019). Effect of Extensometer Usage on Obtaining the Force-Displacement Curve of the Adhesively Single Lap Joint. European Mechanical Science, 3(4), 142-146. https://doi.org/10.26701/ems.646610
AMA Çalık A, Akpınar S. Effect of Extensometer Usage on Obtaining the Force-Displacement Curve of the Adhesively Single Lap Joint. EMS. Aralık 2019;3(4):142-146. doi:10.26701/ems.646610
Chicago Çalık, Ahmet, ve Salih Akpınar. “Effect of Extensometer Usage on Obtaining the Force-Displacement Curve of the Adhesively Single Lap Joint”. European Mechanical Science 3, sy. 4 (Aralık 2019): 142-46. https://doi.org/10.26701/ems.646610.
EndNote Çalık A, Akpınar S (01 Aralık 2019) Effect of Extensometer Usage on Obtaining the Force-Displacement Curve of the Adhesively Single Lap Joint. European Mechanical Science 3 4 142–146.
IEEE A. Çalık ve S. Akpınar, “Effect of Extensometer Usage on Obtaining the Force-Displacement Curve of the Adhesively Single Lap Joint”, EMS, c. 3, sy. 4, ss. 142–146, 2019, doi: 10.26701/ems.646610.
ISNAD Çalık, Ahmet - Akpınar, Salih. “Effect of Extensometer Usage on Obtaining the Force-Displacement Curve of the Adhesively Single Lap Joint”. European Mechanical Science 3/4 (Aralık 2019), 142-146. https://doi.org/10.26701/ems.646610.
JAMA Çalık A, Akpınar S. Effect of Extensometer Usage on Obtaining the Force-Displacement Curve of the Adhesively Single Lap Joint. EMS. 2019;3:142–146.
MLA Çalık, Ahmet ve Salih Akpınar. “Effect of Extensometer Usage on Obtaining the Force-Displacement Curve of the Adhesively Single Lap Joint”. European Mechanical Science, c. 3, sy. 4, 2019, ss. 142-6, doi:10.26701/ems.646610.
Vancouver Çalık A, Akpınar S. Effect of Extensometer Usage on Obtaining the Force-Displacement Curve of the Adhesively Single Lap Joint. EMS. 2019;3(4):142-6.

Cited By









Dergi TR Dizin'de Taranmaktadır.

Flag Counter