Research Article
BibTex RIS Cite
Year 2021, Volume: 5 Issue: 2, 51 - 55, 20.06.2021
https://doi.org/10.26701/ems.781175

Abstract

References

  • Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A.J., De Smet, P., Haszler, A., Vieregge, A. (2000). Recent development in aluminum alloys for the automotive industry. Materials Science and Engineering A, 280(1): 37-49, DOI: 10.1016/S0921-5093(99)00653-X.
  • Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 193: 281-297, DOI: 10.1098/rspa.1948.0045.
  • Woodthorpe, J., Pearce, R. (1970). The anomalous behavior of aluminium sheet under balanced biaxial tension. International Journal of Mechanical Sciences, 12(4): 341-347, DOI: 10.1016/0020-7403(70)90087-1.
  • Chung, K., Shah, K. (1992). Finite element simulation of sheet metal forming for planar anisotropic metals. International Journal of Plasticity, 8(4): 453-476, DOI: 10.1016/0749-6419(92)90059-L.
  • Barlat, F., Lege, D.J., Brem, J.C. (1991). A six-component yield function for anisotropic materials. International Journal of Plasticity, 7(7): 693-712, DOI: 10.1016/0749-6419(91)90052-Z.
  • Yoon, J.W., Song, I.S., Yang, D.Y., Chung, K., Barlat, F. (1995). Finite element method for sheet forming based on an anisotropic strain-rate potential and the convected coordinate system. International Journal of Mechanical Sciences, 37(7): 733-752, DOI: 10.1016/0020-7403(95)00003-G.
  • Chung, K., Lee, S.Y., Barlat, F., Keum, Y.T., Park, J.M. (1996). Finite element simulation of sheet forming based on a planar anisotropic strain-rate potential. International Journal of Plasticity, 12(1), 93-115, DOI: 10.1016/S0749-6419(95)00046-1.
  • Yoon, J.W., Yang, D.Y., Chung, K. (1999). Elasto-plastic finite element method based on incremental deformation theory and continuum based shell elements for planar anisotropic sheet materials. Computer Methods in Applied Mechanics and Engineering, 174(1-2), 23-56, DOI: 10.1016/S0045-7825(98)00275-8.
  • Parente, M.P.L., Valente, R.A.F., Jorge, R.M.N., Cardoso, R.P.R., De Sousa, R.J.A. (2006). Sheet metal forming simulation using EAS solid-shell finite elements. Finite Elements in Analysis and Design, 42(13), 1137-1149, DOI: 10.1016/j.finel.2006.04.005.
  • Banabic, D. (2010). Sheet Metal Forming Processes Constitutive Modelling and Numerical Simulation. Springer-Verlag, Berlin.
  • Yoon, J.W., Barlat, F., Chung, K., Pourboghrat, F., Yang, D.Y. (2000). Earing predictions based on asymmetric nonquadratic yield function. International Journal of Plasticity, 16(9), 1075-1104, DOI: 10.1016/S0749-6419(99)00086-8.

On the Effect of Through-Thickness Integration for the Blank Thickness and Ear Formation in Cup Drawing FE Analysis

Year 2021, Volume: 5 Issue: 2, 51 - 55, 20.06.2021
https://doi.org/10.26701/ems.781175

Abstract

Various numerical parameters such as element size, mesh topology, element formulations effect the prediction accuracy of sheet metal forming simulations and wrong selection of these parameters can lead to inaccurate predictions. Therefore, selection of proper numerical parameters is crucial for obtaining of realistic results from finite element (FE) analyses. In the present work, influence of the number of through-thickness integration points from the numerical parameters was investigated on the cup drawing simulation. Highly anisotropic AA 2090-T3 aluminum alloy was selected as test material and the anisotropic behavior of the material was defined with Barlat 91 yield criterion. Firstly, cup drawing model was created with implicit code Marc and then FE analyses were performed with five, seven and nine layers to investigate the effect of number of through-thickness integration points. The computed earing profiles and thickness strain distributions were compared with measurements. Comparisons showed that it effects the maximum cup height and thickness strain distribution along the rolling direction.

References

  • Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A.J., De Smet, P., Haszler, A., Vieregge, A. (2000). Recent development in aluminum alloys for the automotive industry. Materials Science and Engineering A, 280(1): 37-49, DOI: 10.1016/S0921-5093(99)00653-X.
  • Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 193: 281-297, DOI: 10.1098/rspa.1948.0045.
  • Woodthorpe, J., Pearce, R. (1970). The anomalous behavior of aluminium sheet under balanced biaxial tension. International Journal of Mechanical Sciences, 12(4): 341-347, DOI: 10.1016/0020-7403(70)90087-1.
  • Chung, K., Shah, K. (1992). Finite element simulation of sheet metal forming for planar anisotropic metals. International Journal of Plasticity, 8(4): 453-476, DOI: 10.1016/0749-6419(92)90059-L.
  • Barlat, F., Lege, D.J., Brem, J.C. (1991). A six-component yield function for anisotropic materials. International Journal of Plasticity, 7(7): 693-712, DOI: 10.1016/0749-6419(91)90052-Z.
  • Yoon, J.W., Song, I.S., Yang, D.Y., Chung, K., Barlat, F. (1995). Finite element method for sheet forming based on an anisotropic strain-rate potential and the convected coordinate system. International Journal of Mechanical Sciences, 37(7): 733-752, DOI: 10.1016/0020-7403(95)00003-G.
  • Chung, K., Lee, S.Y., Barlat, F., Keum, Y.T., Park, J.M. (1996). Finite element simulation of sheet forming based on a planar anisotropic strain-rate potential. International Journal of Plasticity, 12(1), 93-115, DOI: 10.1016/S0749-6419(95)00046-1.
  • Yoon, J.W., Yang, D.Y., Chung, K. (1999). Elasto-plastic finite element method based on incremental deformation theory and continuum based shell elements for planar anisotropic sheet materials. Computer Methods in Applied Mechanics and Engineering, 174(1-2), 23-56, DOI: 10.1016/S0045-7825(98)00275-8.
  • Parente, M.P.L., Valente, R.A.F., Jorge, R.M.N., Cardoso, R.P.R., De Sousa, R.J.A. (2006). Sheet metal forming simulation using EAS solid-shell finite elements. Finite Elements in Analysis and Design, 42(13), 1137-1149, DOI: 10.1016/j.finel.2006.04.005.
  • Banabic, D. (2010). Sheet Metal Forming Processes Constitutive Modelling and Numerical Simulation. Springer-Verlag, Berlin.
  • Yoon, J.W., Barlat, F., Chung, K., Pourboghrat, F., Yang, D.Y. (2000). Earing predictions based on asymmetric nonquadratic yield function. International Journal of Plasticity, 16(9), 1075-1104, DOI: 10.1016/S0749-6419(99)00086-8.
There are 11 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Bora Şener 0000-0002-8237-1950

Toros Arda Akşen 0000-0002-7087-3216

Mehmet Fırat 0000-0002-3973-4736

Publication Date June 20, 2021
Acceptance Date January 5, 2021
Published in Issue Year 2021 Volume: 5 Issue: 2

Cite

APA Şener, B., Akşen, T. A., & Fırat, M. (2021). On the Effect of Through-Thickness Integration for the Blank Thickness and Ear Formation in Cup Drawing FE Analysis. European Mechanical Science, 5(2), 51-55. https://doi.org/10.26701/ems.781175

Dergi TR Dizin'de Taranmaktadır.

Flag Counter