Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 5 Sayı: 2, 56 - 63, 20.06.2021
https://doi.org/10.26701/ems.792302

Öz

Kaynakça

  • Ural, Z., Gencoglu, M.T., (2010). Mathematical Models of PEM Fuel Cells. 5th International Ege Energy Symposium and Exhibition (IEESE-5). (June): 27–30.
  • Giorgi, L., & Leccese, F. (2013). Fuel cells: Technologies and applications. The Open Fuel Cells Journal, 6(1): 1-20. doi: 10.2174/1875932720130719001.
  • Scott, K., Shukla, A.K., (2004). Polymer electrolyte membrane fuel cells: Principles and advances. Reviews in Environmental Science and Biotechnology. 3(3): 273–80. doi: 10.1007/s11157-004-6884-z.
  • Vishnyakov, V.M., (2006). Proton exchange membrane fuel cells. Vacuum. 80(10): 1053–65. doi: 10.1016/j.vacuum.2006.03.029.
  • Habibi, A., Mousavi, N., Mohammadi, M., Farahmand, S. (2019). The Performance of Types of Fuel Cell: Energy Generation. International Journal of Engineering Science and Application, 3(3), 142-150.
  • Dhand, A., (2017). Advances in Materials for Fuel Cell Technologies- A Review. International Journal for Research in Applied Science and Engineering Technology. V(IX): 1672–82. doi: 10.22214/ijraset.2017.9243.
  • Perry, M.L., Fuller, T.F., (2002). A Historical Perspective of Fuel Cell Technology in the 20th Century. Journal of The Electrochemical Society. 149(7): 59-67. doi: 10.1149/1.1488651.
  • Baroutaji, A., Carton, J.G., Sajjia, M., Olabi, A.G., (2016). Materials in PEM Fuel Cells. Elsevier Ltd.
  • Tamilarasan, U., Karunamoorthy, L., Palanikumar, K., (2015). Mechanical properties evaluation of the carbon fibre reinforced aluminium sandwich composites. Materials Research. 18(5): 1029–37. doi: 10.1590/1516-1439.017215.
  • Yu, H.N., Kim, S.S., Suh, J. Do., Lee, D.G., (2010). Composite endplates with pre-curvature for PEMFC (polymer electrolyte membrane fuel cell). Composite Structures. 92(6): 1498–503. doi: 10.1016/j.compstruct.2009.10.023.
  • Hermann, A., Chaudhuri, T., Spagnol, P., (2005). Bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy. 30(12): 1297–302. doi: 10.1016/j.ijhydene.2005.04.016.
  • Wilberforce, T., El Hassan, Z., Ogungbemi, E., Ijaodola, O., Khatib, F.N., Durrant, A., et al., (2019). A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells. Renewable and Sustainable Energy Reviews. 111(April): 236–60. doi: 10.1016/j.rser.2019.04.081.
  • Heydari, M. H., Choupani, N., & Shameli, M. (2011). Experimental and numerical investigation of mixed-mode interlaminar fracture of carbon-polyester laminated woven composite by using arcan set-up. Applied Composite Materials, 18(6), 499-511. doi.org/10.1007/s10443-011-9223-x.
  • Hossein Abadi, R., Refah Torun, A., Mohammadali Zadeh Fard, A., Choupani, N., (2020). Fracture characteristics of mixed-mode toughness of dissimilar adherends (cohesive and interfacial fracture). Journal of Adhesion Science and Technology. 34(6): 599–615. doi: 10.1080/01694243.2019.1674102.
  • Nikbakht, M., Choupani, N. (2008). Numerical investigation of delamination in carbon-epoxy composite using arcan specimen. International Journal of Mechanical, Industrial and Aerospace Engineering, 2(4), 259-266.
  • Darıcık, F., Aslan, Z., (2017). Characterization of Delamination Crack in Multidirectional E-glass/epoxy Composite under Mode I Loading. European Mechanical Science. 1(4): 117–28. doi: 10.26701/ems.341788.
  • Mubin, A.N.A., Bahrom, M.H., Azri, M., Ibrahim, Z., Rahim, N.A., Raihan, S.R.S., (2017). Analysis performance of proton exchange membrane fuel cell (PEMFC). IOP Conference Series: Materials Science and Engineering. 210(1). doi: 10.1088/1757-899X/210/1/012052.
  • Qi, Z., Kaufman, A., (2002). PEM fuel cell stacks operated under dry-reactant conditions. Journal of Power Sources. 109(2): 469–76. doi: 10.1016/S0378-7753(02)00111-8.
  • Yu, H.N., Kim, S.S., Suh, J. Do., Lee, D.G., (2010). Axiomatic design of the sandwich composite endplate for PEMFC in fuel cell vehicles. Composite Structures. 92(6): 1504–11. doi: 10.1016/j.compstruct.2009.10.026.
  • Kim, J. S., Park, J. B., Kim, Y. M., Ahn, S. H., Sun, H. Y., Kim, K. H., Song, T. W. (2008). Fuel cell end plates: a review. International Journal of Precision Engineering and Manufacturing, 9(1), 39-46.
  • Asghari, S., Shahsamandi, M.H., Ashraf Khorasani, M.R., (2010). Design and manufacturing of end plates of a 5 kW PEM fuel cell. International Journal of Hydrogen Energy. 35(17): 9291–7. doi: 10.1016/j.ijhydene.2010.02.135.
  • Shameli, M., & Choupani, N. (2016). Fracture criterion of woven glass-epoxy composite using a new modified mixed-mode loading fixture. International Journal of Applied Mechanics, 8(02), 16-30. doi: 10.1142/S1758825116500150
  • Abaqus 6.11 Analysis User’s Manual Volume II Analysis (2011), Dassault Systèmes, USA.
  • Choupani, N., Heydari, M. H. (2014). A new comparative method to evaluate the fracture properties of laminated composite. International Journal of Engineering, 27(6), 991-1004.
  • Choupani, N., (2008). Experimental and numerical investigation of the mixed-mode delamination in Arcan laminated specimens. Materials Science and Engineering A. 478(1–2): 229–42. doi: 10.1016/j.msea.2007.05.103.
  • Ning, H., Li, J., Hu, N., Yan, C., Liu, Y., Wu, L., et al., (2015). Interlaminar mechanical properties of carbon fiber reinforced plastic laminates modified with graphene oxide interleaf. Carbon. 91: 224–33. doi: 10.1016/j.carbon.2015.04.054.
  • Syarafuddin Salam, S., Mizamzul Mehat, N., Kamaruddin, S., (2019). Optimization of Laminated Composites Characteristics via integration of Chamis Equation, Taguchi method and Principal Component Analysis. IOP Conference Series: Materials Science and Engineering. 551(1). doi: 10.1088/1757-899X/551/1/012110.
  • Choupani, N., (2008). Interfacial mixed-mode fracture characterization of adhesively bonded joints. International Journal of Adhesion and Adhesives. 28(6): 267–82. doi: 10.1016/j.ijadhadh.2007.08.002.
  • Choupani, N., (2009). Characterization of fracture in adhesively bonded double-lap joints. International Journal of Adhesion and Adhesives. 29(8): 761–73. doi: 10.1016/j.ijadhadh.2009.05.002.
  • Politis, D. J., Politis, N. J., Lin, J. (2021). Review of recent developments in manufacturing lightweight multi-metal gears. Production Engineering, 15(2), 235-262. doi: 10.1007/s11740-020-01011-5.
  • Prini, F., Benson, S.D., Dow, R.S., (2017). The effect of laminate, stud geometry and advance coefficient on the deflection of a composite marine propeller. Progress in the Analysis and Design of Marine Structures - Proceedings of the 6th International Conference on Marine Structures, MARSTRUCT 2017. (April): 856–68. doi: 10.1201/9781315157368-111.
  • Li, L.L., Wang, Z.Y., Bai, Z.C., Mao, Y., Gao, B., Xin, H.T., et al., (2006). Three-dimensional finite element analysis of weakened roots restored with different cements in combination with titanium alloy posts. Chinese Medical Journal. 119(4): 305–11. doi: 10.1097/00029330-200602020-00007.
  • Miura, M., Shindo, Y., Takeda, T., Narita, F., (2012). Interlaminar fracture characterization of woven glass/epoxy composites under mixed-mode II/III loading conditions at cryogenic temperatures. Engineering Fracture Mechanics. 96: 615–25. doi: 10.1016/j.engfracmech.2012.09.019.
  • Hellier, A.K., Chaphalkar, P.P., Prusty, B.G., (2017). Fracture toughness measurement for aluminium 6061-T6 using notched round bars. 9th Australasian Congress on Applied Mechanics, ACAM 2017. 2017-Novem(November).
  • Herráez, M., Fernández, A., Lopes, C.S., González, C., (2016). Strength and toughness of structural fibres for composite material reinforcement. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 374(2071). doi: 10.1098/rsta.2015.0274.
  • Sockalingam, S., Gillespie, J.W., Keefe, M., (2015). Dynamic modeling of Kevlar KM2 single fiber subjected to transverse impact. International Journal of Solids and Structures. 67–68: 297–310. doi: 10.1016/j.ijsolstr.2015.04.031.
  • Hosen, M.A., Alengaram, U.J., Jumaat, M.Z., Sulong, N.H.R., Darain, K.M. ud., (2017). Glass Fiber Reinforced Polymer (GFRP) Bars for Enhancing the Flexural Performance of RC Beams Using Side-NSM Technique. Polymers. 9(12): 180. doi: 10.3390/polym9050180.
  • Rao, A.R.M., Lakshmi, K., (2009). Multi-objective optimal design of hybrid laminate composite structures using scatter search. Journal of Composite Materials. 43(20): 2157–82. doi: 10.1177/0021998309339221.
  • Gdoutos, E.E. (2005) Fracture mechanics An Inroduction Second edition, Springer, Netherlands.
  • Flom Y., Parker B. H., Chu H. P. (1989) Fracture Toughness of SiC/Al Metal Matrix Composite NASA Technical Memorandum 100745.
  • Asby M. F., Jones D. R. H. (2006) Engineering Materials 2 An Introduction to Microstructures, Processing and Design Third Edition, Elsevier Linacre House, Burlington.
  • Ozdil, F., Carlsson, L.A., Davies, P., (1998). Beam analysis of angle-ply laminate end-notched flexure specimens. Composites Science and Technology. 58(12): 1929–38. doi: 10.1016/S0266-3538(98)00018-9.
  • Chalkley, P. and Rider, A., (2003). Toughening boron/epoxy bonded joints using the resin film infusion technique. Composites Part A: Applied Science and Manufacturing, 34(4), pp.341-348 doi: 10.1016/S1359-835X(03)00027-7.
  • Zhu, Y., (2009). Characterization of Interlaminar Fracture Toughness of a Carbon/epoxy Composite Material, 249. A thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science, The Pennsylvania State University.

A Numerical Investigation of The Fracture Energy of Materials for Fuel Cell End Plates

Yıl 2021, Cilt: 5 Sayı: 2, 56 - 63, 20.06.2021
https://doi.org/10.26701/ems.792302

Öz

Nowadays, with increasing energy requirements, the use of clean energy resources has become important. Fuel cells are an important key for clean energy technology due to wide range of utilization areas such as automotive, portable power applications, electricity generation, space, aviation and naval technologies. Additionally, they have many significant properties such as not producing harmful gases, therefore they do not cause environmental and chemical pollution. Besides, they have not any moving parts, also they do not produce noise. By comparison to fossil fuel, fuel cells have high efficiency that reaches up to 60% in appropriate conditions. Proton Exchange Membrane Fuel Cell (PEMFC) has many advantages than other fuel cell types due to simple structure, higher efficiency and low operating temperature. PEMFC may consist of one or more stacks to generate more electricity. End plate of PEMFC holds together all parts of it. Therefore, the material selection for end plate is important to provide safe conditions. To use PEMFC safely, investigation of material fracture energy is required to decide that the material is in safe conditions or not. There are three fracture energy modes which are mode I, mode II and mode III. There are many methods to investigate failure of material at different modes. Unlike other methods, Arcan specimen gives facility to evaluate of mode I, mode II and mixed modes. The main purpose of this paper was to compare the results of fracture energy (stain energy release rate) of different materials for end plates in fuel cells. Another goal was to select a sutitable material was selected as PEMFC end plate.

Kaynakça

  • Ural, Z., Gencoglu, M.T., (2010). Mathematical Models of PEM Fuel Cells. 5th International Ege Energy Symposium and Exhibition (IEESE-5). (June): 27–30.
  • Giorgi, L., & Leccese, F. (2013). Fuel cells: Technologies and applications. The Open Fuel Cells Journal, 6(1): 1-20. doi: 10.2174/1875932720130719001.
  • Scott, K., Shukla, A.K., (2004). Polymer electrolyte membrane fuel cells: Principles and advances. Reviews in Environmental Science and Biotechnology. 3(3): 273–80. doi: 10.1007/s11157-004-6884-z.
  • Vishnyakov, V.M., (2006). Proton exchange membrane fuel cells. Vacuum. 80(10): 1053–65. doi: 10.1016/j.vacuum.2006.03.029.
  • Habibi, A., Mousavi, N., Mohammadi, M., Farahmand, S. (2019). The Performance of Types of Fuel Cell: Energy Generation. International Journal of Engineering Science and Application, 3(3), 142-150.
  • Dhand, A., (2017). Advances in Materials for Fuel Cell Technologies- A Review. International Journal for Research in Applied Science and Engineering Technology. V(IX): 1672–82. doi: 10.22214/ijraset.2017.9243.
  • Perry, M.L., Fuller, T.F., (2002). A Historical Perspective of Fuel Cell Technology in the 20th Century. Journal of The Electrochemical Society. 149(7): 59-67. doi: 10.1149/1.1488651.
  • Baroutaji, A., Carton, J.G., Sajjia, M., Olabi, A.G., (2016). Materials in PEM Fuel Cells. Elsevier Ltd.
  • Tamilarasan, U., Karunamoorthy, L., Palanikumar, K., (2015). Mechanical properties evaluation of the carbon fibre reinforced aluminium sandwich composites. Materials Research. 18(5): 1029–37. doi: 10.1590/1516-1439.017215.
  • Yu, H.N., Kim, S.S., Suh, J. Do., Lee, D.G., (2010). Composite endplates with pre-curvature for PEMFC (polymer electrolyte membrane fuel cell). Composite Structures. 92(6): 1498–503. doi: 10.1016/j.compstruct.2009.10.023.
  • Hermann, A., Chaudhuri, T., Spagnol, P., (2005). Bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy. 30(12): 1297–302. doi: 10.1016/j.ijhydene.2005.04.016.
  • Wilberforce, T., El Hassan, Z., Ogungbemi, E., Ijaodola, O., Khatib, F.N., Durrant, A., et al., (2019). A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells. Renewable and Sustainable Energy Reviews. 111(April): 236–60. doi: 10.1016/j.rser.2019.04.081.
  • Heydari, M. H., Choupani, N., & Shameli, M. (2011). Experimental and numerical investigation of mixed-mode interlaminar fracture of carbon-polyester laminated woven composite by using arcan set-up. Applied Composite Materials, 18(6), 499-511. doi.org/10.1007/s10443-011-9223-x.
  • Hossein Abadi, R., Refah Torun, A., Mohammadali Zadeh Fard, A., Choupani, N., (2020). Fracture characteristics of mixed-mode toughness of dissimilar adherends (cohesive and interfacial fracture). Journal of Adhesion Science and Technology. 34(6): 599–615. doi: 10.1080/01694243.2019.1674102.
  • Nikbakht, M., Choupani, N. (2008). Numerical investigation of delamination in carbon-epoxy composite using arcan specimen. International Journal of Mechanical, Industrial and Aerospace Engineering, 2(4), 259-266.
  • Darıcık, F., Aslan, Z., (2017). Characterization of Delamination Crack in Multidirectional E-glass/epoxy Composite under Mode I Loading. European Mechanical Science. 1(4): 117–28. doi: 10.26701/ems.341788.
  • Mubin, A.N.A., Bahrom, M.H., Azri, M., Ibrahim, Z., Rahim, N.A., Raihan, S.R.S., (2017). Analysis performance of proton exchange membrane fuel cell (PEMFC). IOP Conference Series: Materials Science and Engineering. 210(1). doi: 10.1088/1757-899X/210/1/012052.
  • Qi, Z., Kaufman, A., (2002). PEM fuel cell stacks operated under dry-reactant conditions. Journal of Power Sources. 109(2): 469–76. doi: 10.1016/S0378-7753(02)00111-8.
  • Yu, H.N., Kim, S.S., Suh, J. Do., Lee, D.G., (2010). Axiomatic design of the sandwich composite endplate for PEMFC in fuel cell vehicles. Composite Structures. 92(6): 1504–11. doi: 10.1016/j.compstruct.2009.10.026.
  • Kim, J. S., Park, J. B., Kim, Y. M., Ahn, S. H., Sun, H. Y., Kim, K. H., Song, T. W. (2008). Fuel cell end plates: a review. International Journal of Precision Engineering and Manufacturing, 9(1), 39-46.
  • Asghari, S., Shahsamandi, M.H., Ashraf Khorasani, M.R., (2010). Design and manufacturing of end plates of a 5 kW PEM fuel cell. International Journal of Hydrogen Energy. 35(17): 9291–7. doi: 10.1016/j.ijhydene.2010.02.135.
  • Shameli, M., & Choupani, N. (2016). Fracture criterion of woven glass-epoxy composite using a new modified mixed-mode loading fixture. International Journal of Applied Mechanics, 8(02), 16-30. doi: 10.1142/S1758825116500150
  • Abaqus 6.11 Analysis User’s Manual Volume II Analysis (2011), Dassault Systèmes, USA.
  • Choupani, N., Heydari, M. H. (2014). A new comparative method to evaluate the fracture properties of laminated composite. International Journal of Engineering, 27(6), 991-1004.
  • Choupani, N., (2008). Experimental and numerical investigation of the mixed-mode delamination in Arcan laminated specimens. Materials Science and Engineering A. 478(1–2): 229–42. doi: 10.1016/j.msea.2007.05.103.
  • Ning, H., Li, J., Hu, N., Yan, C., Liu, Y., Wu, L., et al., (2015). Interlaminar mechanical properties of carbon fiber reinforced plastic laminates modified with graphene oxide interleaf. Carbon. 91: 224–33. doi: 10.1016/j.carbon.2015.04.054.
  • Syarafuddin Salam, S., Mizamzul Mehat, N., Kamaruddin, S., (2019). Optimization of Laminated Composites Characteristics via integration of Chamis Equation, Taguchi method and Principal Component Analysis. IOP Conference Series: Materials Science and Engineering. 551(1). doi: 10.1088/1757-899X/551/1/012110.
  • Choupani, N., (2008). Interfacial mixed-mode fracture characterization of adhesively bonded joints. International Journal of Adhesion and Adhesives. 28(6): 267–82. doi: 10.1016/j.ijadhadh.2007.08.002.
  • Choupani, N., (2009). Characterization of fracture in adhesively bonded double-lap joints. International Journal of Adhesion and Adhesives. 29(8): 761–73. doi: 10.1016/j.ijadhadh.2009.05.002.
  • Politis, D. J., Politis, N. J., Lin, J. (2021). Review of recent developments in manufacturing lightweight multi-metal gears. Production Engineering, 15(2), 235-262. doi: 10.1007/s11740-020-01011-5.
  • Prini, F., Benson, S.D., Dow, R.S., (2017). The effect of laminate, stud geometry and advance coefficient on the deflection of a composite marine propeller. Progress in the Analysis and Design of Marine Structures - Proceedings of the 6th International Conference on Marine Structures, MARSTRUCT 2017. (April): 856–68. doi: 10.1201/9781315157368-111.
  • Li, L.L., Wang, Z.Y., Bai, Z.C., Mao, Y., Gao, B., Xin, H.T., et al., (2006). Three-dimensional finite element analysis of weakened roots restored with different cements in combination with titanium alloy posts. Chinese Medical Journal. 119(4): 305–11. doi: 10.1097/00029330-200602020-00007.
  • Miura, M., Shindo, Y., Takeda, T., Narita, F., (2012). Interlaminar fracture characterization of woven glass/epoxy composites under mixed-mode II/III loading conditions at cryogenic temperatures. Engineering Fracture Mechanics. 96: 615–25. doi: 10.1016/j.engfracmech.2012.09.019.
  • Hellier, A.K., Chaphalkar, P.P., Prusty, B.G., (2017). Fracture toughness measurement for aluminium 6061-T6 using notched round bars. 9th Australasian Congress on Applied Mechanics, ACAM 2017. 2017-Novem(November).
  • Herráez, M., Fernández, A., Lopes, C.S., González, C., (2016). Strength and toughness of structural fibres for composite material reinforcement. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 374(2071). doi: 10.1098/rsta.2015.0274.
  • Sockalingam, S., Gillespie, J.W., Keefe, M., (2015). Dynamic modeling of Kevlar KM2 single fiber subjected to transverse impact. International Journal of Solids and Structures. 67–68: 297–310. doi: 10.1016/j.ijsolstr.2015.04.031.
  • Hosen, M.A., Alengaram, U.J., Jumaat, M.Z., Sulong, N.H.R., Darain, K.M. ud., (2017). Glass Fiber Reinforced Polymer (GFRP) Bars for Enhancing the Flexural Performance of RC Beams Using Side-NSM Technique. Polymers. 9(12): 180. doi: 10.3390/polym9050180.
  • Rao, A.R.M., Lakshmi, K., (2009). Multi-objective optimal design of hybrid laminate composite structures using scatter search. Journal of Composite Materials. 43(20): 2157–82. doi: 10.1177/0021998309339221.
  • Gdoutos, E.E. (2005) Fracture mechanics An Inroduction Second edition, Springer, Netherlands.
  • Flom Y., Parker B. H., Chu H. P. (1989) Fracture Toughness of SiC/Al Metal Matrix Composite NASA Technical Memorandum 100745.
  • Asby M. F., Jones D. R. H. (2006) Engineering Materials 2 An Introduction to Microstructures, Processing and Design Third Edition, Elsevier Linacre House, Burlington.
  • Ozdil, F., Carlsson, L.A., Davies, P., (1998). Beam analysis of angle-ply laminate end-notched flexure specimens. Composites Science and Technology. 58(12): 1929–38. doi: 10.1016/S0266-3538(98)00018-9.
  • Chalkley, P. and Rider, A., (2003). Toughening boron/epoxy bonded joints using the resin film infusion technique. Composites Part A: Applied Science and Manufacturing, 34(4), pp.341-348 doi: 10.1016/S1359-835X(03)00027-7.
  • Zhu, Y., (2009). Characterization of Interlaminar Fracture Toughness of a Carbon/epoxy Composite Material, 249. A thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science, The Pennsylvania State University.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Research Article
Yazarlar

Adem Avcu 0000-0001-9981-5311

Naghdalı Choupanı 0000-0001-7872-6408

Gökhan Tüccar 0000-0003-3041-299X

Yayımlanma Tarihi 20 Haziran 2021
Kabul Tarihi 5 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 2

Kaynak Göster

APA Avcu, A., Choupanı, N., & Tüccar, G. (2021). A Numerical Investigation of The Fracture Energy of Materials for Fuel Cell End Plates. European Mechanical Science, 5(2), 56-63. https://doi.org/10.26701/ems.792302
AMA Avcu A, Choupanı N, Tüccar G. A Numerical Investigation of The Fracture Energy of Materials for Fuel Cell End Plates. EMS. Haziran 2021;5(2):56-63. doi:10.26701/ems.792302
Chicago Avcu, Adem, Naghdalı Choupanı, ve Gökhan Tüccar. “A Numerical Investigation of The Fracture Energy of Materials for Fuel Cell End Plates”. European Mechanical Science 5, sy. 2 (Haziran 2021): 56-63. https://doi.org/10.26701/ems.792302.
EndNote Avcu A, Choupanı N, Tüccar G (01 Haziran 2021) A Numerical Investigation of The Fracture Energy of Materials for Fuel Cell End Plates. European Mechanical Science 5 2 56–63.
IEEE A. Avcu, N. Choupanı, ve G. Tüccar, “A Numerical Investigation of The Fracture Energy of Materials for Fuel Cell End Plates”, EMS, c. 5, sy. 2, ss. 56–63, 2021, doi: 10.26701/ems.792302.
ISNAD Avcu, Adem vd. “A Numerical Investigation of The Fracture Energy of Materials for Fuel Cell End Plates”. European Mechanical Science 5/2 (Haziran 2021), 56-63. https://doi.org/10.26701/ems.792302.
JAMA Avcu A, Choupanı N, Tüccar G. A Numerical Investigation of The Fracture Energy of Materials for Fuel Cell End Plates. EMS. 2021;5:56–63.
MLA Avcu, Adem vd. “A Numerical Investigation of The Fracture Energy of Materials for Fuel Cell End Plates”. European Mechanical Science, c. 5, sy. 2, 2021, ss. 56-63, doi:10.26701/ems.792302.
Vancouver Avcu A, Choupanı N, Tüccar G. A Numerical Investigation of The Fracture Energy of Materials for Fuel Cell End Plates. EMS. 2021;5(2):56-63.

Dergi TR Dizin'de Taranmaktadır.

Flag Counter