A preliminary Investigation of Surface Micro Modification Effects on the Biocompatibility of 316L Stainless Steel
Year 2021,
Volume: 5 Issue: 3, 109 - 115, 20.09.2021
Sıdıka Mine Toker
,
Erdoğan Özbulut
Zübeyir Kolçak
Esra Güner
Abstract
Effects of surface properties such as roughness and surface energy are critical for determining the biocompatibility of all types of biomaterials, as in the case of biomedical alloys. Recently, microstructure induced surface energy changes have started attracting attention in surface property related biocompatibility analysis of metals. The current study mainly aims to focus on the effects of surface micro modification on the biocompatibility of metallic biomaterials, in order to get an understanding of the underlying mechanisms that affect surface properties and biocompatibility. For this purpose, a preliminary biocompatibility analysis was conducted on a conventional biomedical alloy; 316L stainless steel, whose surface was modified by forming micro-deformation areas of different patterns. The results of this study indicated that, in addition to surface roughness, micro-deformation pattern characteristics are also very critical parameters in terms of determining cellular response, which also affect surface energy by inducing microstructural mechanisms.
Supporting Institution
ESOGU Bilimsel Araştırma Projeleri (BAP)
Project Number
2018/15038
Thanks
Yazarlar ESOGU Cellular Therapy and Stem Cell Production, Application and Research Center (ESTEM) ekibine in vitro deneylerdeki katkıları için teşekkür eder.
References
- [1] Bauer S., Schmuki P., Mark K.V.D., Park J., (2013). Engineering Biocompatible Implant Surfaces Part I: Materials and Surfaces. Progress in Materials Science, 58(3):261-326, DOI: 10.1016/j.pmatsci.2012.09.001.
- [2] Manam N.S., Harun W.S.W., Shri D.N.A., Ghani S.A.C., Kurniawan T., Ismail M.H., Ibrahim M.H.I., (2017). Study of Corrosion in Biocompatible Metals for Implants: A Review, Journal of Alloys and Compounds, 701: 698-715, DOI: 10.1016/j.jallcom.2017.01.196.
- [3] Toker S.M., Canadinc D., Maier H.J., Birer O., (2014). Evaluation of Passive Oxide Layer Formation- Biocompatibility Relationship in NiTi Shape Memory Alloys: Geometry and Body Location Dependency. Materials Science and Engineering C, 36:118-129, DOI: doi.org/10.1016/j.msec.2013.11.040.
- [4] Lu T., Wen J., Qian S., Cao H., Ning C., Pan X., Jiang X., Liu X., Chu P. K., (2015). Enhanced Osteointegration on Tantalum- Implanted Polyetheretherketone Surface with Bone-Like Elastic Modulus, Biomaterials, 51: 173-183, DOI: 10.1016/j.biomaterials.2015.02.018.
- [5] Keyf F., Uzun G., (2007). Surface Characteristics of the Implant Systems and Osseointegration. Journal of Atatürk University Faculty of Dentistry, 2: 43-50.
- [6] Sahin C., Korkmaz C., Uzun G., (2015). Osseointegration, Surface Porosity and Nanotechnology, Journal of Atatürk University Faculty of Dentistry, 25(13): 174-181, DOI: 10.17567/dfd.90462.
- [7] Toker S.M., Gerstein G., Maier H.J., Canadinc D., (2018). Effects of Microstructural Mechanisms on The Localized Oxidation Behavior of NiTi Shape Memory Alloys in Simulated Body fluid. Journal of Materials Science, 53: 948-958, DOI:10.1007/s10853-017-1586-4.
- [8] Venkatsurya P.K.C., Thein W.W., Misra R.D.K., Somani M.C., Karjalainen L.P., (2010). Advancing Nanograined/Ultrafine-grained Structures for Metal Implant Technology: Interplay Between Grooving of Nano/Ultrafine Grains and Cellular Response. Materials Science and Engineering C, 30(7):1050-1059, DOI: 10.1016/j.msec.2010.05.008.
- [9] Liang C., Wang H., Yang J., Li B., Yang Y., Li H., (2012). Biocompatibility of The Micro-Patterned NiTi Surface Produced by Femtosecond Laser. Applied Surface Science, 261: 337-342, DOI: 10.1016/j.apsusc.2012.08.011.
- [10] Uzer B., Toker S.M., Cingoz A., Bagci-Onder T., Gerstein G., Maier H.J., Canadinc D., (2016). An Exploration of Plastic Deformation Dependence of Cell Viability and Adhesion in Metallic Implant Materials. Journal of the Mechanical Behavior of Biomedical Materials, 60: 177-186. DOI: 10.1016/j.jmbbm.2016.01.001.
- [11] Toker S.M., Sugerman G., Frey E.C., (2019). Effects of Surface Characteristics on the in vitro Biocompatibility Response of NiTi Shape Memory Alloys. Academic Platform Journal of Engineering and Science, 7(2): 112-116.
- [12] Uzer B., (2020) Modulating the Surface Properties of Metallic Implants and the Response of Breast Cancer Cells by Surface Relief Induced via Bulk Plastic Deformation, Frontiers in Materials,.7: 1-10. DOI:10.3389/fmats.2020.00099.
Year 2021,
Volume: 5 Issue: 3, 109 - 115, 20.09.2021
Sıdıka Mine Toker
,
Erdoğan Özbulut
Zübeyir Kolçak
Esra Güner
Project Number
2018/15038
References
- [1] Bauer S., Schmuki P., Mark K.V.D., Park J., (2013). Engineering Biocompatible Implant Surfaces Part I: Materials and Surfaces. Progress in Materials Science, 58(3):261-326, DOI: 10.1016/j.pmatsci.2012.09.001.
- [2] Manam N.S., Harun W.S.W., Shri D.N.A., Ghani S.A.C., Kurniawan T., Ismail M.H., Ibrahim M.H.I., (2017). Study of Corrosion in Biocompatible Metals for Implants: A Review, Journal of Alloys and Compounds, 701: 698-715, DOI: 10.1016/j.jallcom.2017.01.196.
- [3] Toker S.M., Canadinc D., Maier H.J., Birer O., (2014). Evaluation of Passive Oxide Layer Formation- Biocompatibility Relationship in NiTi Shape Memory Alloys: Geometry and Body Location Dependency. Materials Science and Engineering C, 36:118-129, DOI: doi.org/10.1016/j.msec.2013.11.040.
- [4] Lu T., Wen J., Qian S., Cao H., Ning C., Pan X., Jiang X., Liu X., Chu P. K., (2015). Enhanced Osteointegration on Tantalum- Implanted Polyetheretherketone Surface with Bone-Like Elastic Modulus, Biomaterials, 51: 173-183, DOI: 10.1016/j.biomaterials.2015.02.018.
- [5] Keyf F., Uzun G., (2007). Surface Characteristics of the Implant Systems and Osseointegration. Journal of Atatürk University Faculty of Dentistry, 2: 43-50.
- [6] Sahin C., Korkmaz C., Uzun G., (2015). Osseointegration, Surface Porosity and Nanotechnology, Journal of Atatürk University Faculty of Dentistry, 25(13): 174-181, DOI: 10.17567/dfd.90462.
- [7] Toker S.M., Gerstein G., Maier H.J., Canadinc D., (2018). Effects of Microstructural Mechanisms on The Localized Oxidation Behavior of NiTi Shape Memory Alloys in Simulated Body fluid. Journal of Materials Science, 53: 948-958, DOI:10.1007/s10853-017-1586-4.
- [8] Venkatsurya P.K.C., Thein W.W., Misra R.D.K., Somani M.C., Karjalainen L.P., (2010). Advancing Nanograined/Ultrafine-grained Structures for Metal Implant Technology: Interplay Between Grooving of Nano/Ultrafine Grains and Cellular Response. Materials Science and Engineering C, 30(7):1050-1059, DOI: 10.1016/j.msec.2010.05.008.
- [9] Liang C., Wang H., Yang J., Li B., Yang Y., Li H., (2012). Biocompatibility of The Micro-Patterned NiTi Surface Produced by Femtosecond Laser. Applied Surface Science, 261: 337-342, DOI: 10.1016/j.apsusc.2012.08.011.
- [10] Uzer B., Toker S.M., Cingoz A., Bagci-Onder T., Gerstein G., Maier H.J., Canadinc D., (2016). An Exploration of Plastic Deformation Dependence of Cell Viability and Adhesion in Metallic Implant Materials. Journal of the Mechanical Behavior of Biomedical Materials, 60: 177-186. DOI: 10.1016/j.jmbbm.2016.01.001.
- [11] Toker S.M., Sugerman G., Frey E.C., (2019). Effects of Surface Characteristics on the in vitro Biocompatibility Response of NiTi Shape Memory Alloys. Academic Platform Journal of Engineering and Science, 7(2): 112-116.
- [12] Uzer B., (2020) Modulating the Surface Properties of Metallic Implants and the Response of Breast Cancer Cells by Surface Relief Induced via Bulk Plastic Deformation, Frontiers in Materials,.7: 1-10. DOI:10.3389/fmats.2020.00099.