Navier, C.-L.-M.-H. (1827) . Mémoire sur le lois de l’équilibre et du mouvement des corps solides élastiques (1821), Mémoires de l’Academie des Sciences de l’Institut de France, s. II, 7: 375–393.
Cauchy, A.-L. (1828) . Sur l’équilibre et le mouvement d’un système de points matériels sollicités par des forces d’attraction ou de répulsion mutuelle, Exercices de Mathématiques, 3, 188–213, 1822, 1827; Oeuvres, 2(8): 227–252 .
Poisson, S.D. (1829). Mémoire sur l’équilibre et le mouvement des corps élastiques 1828. Mémoires de l’Académie des Sciences de l’Institut de France, s. II, 8: 357–380.
Trovalusci, P., Capecchi, D., Ruta, G. (2009). Genesis of the multiscale approach for materials with microstructure. Archive of Applied Mechanics 79: 981-997.
Mindlin, R. D. (1964). Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 16(1): 51–78,.
Kunin, I. A. (1968). The theory of elastic media with microstructure and the theory of dislocation. Kröner, E. (Eds.), Mechanics of Generalized Continua, Springer, Berlin Heidelberg, p. 321.
Capriz, G. (1989). Continua with Microstructure. Springer Tracts in Natural Philosophy. Springer-Verlag.
Maugin, G.A. (1993). Material Inhomogeneities in Elasticity. Applied Mathematics. Taylor & Francis.
Eringen, A. C. (1999). Microcontinuum Field Theory. Springer.
Eringen, A. C. (2002). Nonlocal Continuum Field Theories. Springer-Verlag.
Rapaport, D.C. (1995). The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge.
Baggio, C., Trovalusci, P. (1998). Limit analysis for no-tension and friction three dimensional discrete systems. Mechanics of Structures and Mach., 26:287 – 304,.
Trovalusci, P. (2014). Molecular approaches for multifield continua: origins and current developments. Tomasz Sadowski and Patrizia Trovalusci (Eds.), Multiscale Modeling of Complex Materials: Phenomenological, Theoretical and Computational Aspects. Springer Vienna, p. 211–278.
Kunin, I. A. (1984). On foundations of the theory of elastic media with microstructure. International Journal of Engineering Sciences, 22(8):969 – 978.
Tuna, M., Leonetti, L., Trovalusci, P., Kirca, M. (2020). ‘Explicit’ and ‘implicit’ non-local continuous descriptions for a plate with circular inclusion in tension. Meccanica 55: 927–944.
Tuna, M., Trovalusci, P. (2020). Scale dependent continuum approaches for discontinuous assemblies: ’explicit’ and ’implicit’ non-local models. Mech. Res. Commun., 103:103461, 6 pages.
Abdollahi, R., Boroomand, B. (2013) Benchmarks in nonlocal elasticity defined by Eringen’s integral model. International Journal of Solids and Structures 50(18): 2758-2771.
Benvenuti, E., Simone, A. (2013). One-dimensional nonlocal and gradient elasticity: Closed-form solution and size effect. Mechanics Research Communications, 48: 46-51.
Zaera R., Serrano, Ó., Fernández-Sáez, J. (2019). On the consistency of the nonlocal strain gradient elasticity. International Journal of Engineering Sciences 138:65-81.
Eroglu, U. (2020). Perturbation approach to Eringen’s local/non-local constitutive equation with applications to 1-D structures. Meccanica, 55: 1119-1134.
Romano, G., Barretta, R., Diaco, M., de Sciarra, F.M. (2017). Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. International Journal of Mechanical Sciences 121:151-156.
Polyanin, P., Manzhirov, A. (2008). Handbook of integral equations. Chapman and Hall/CRC, London.
Some New Approximate Solutions in Closed-Form to Problems of Nanobars
Year 2021,
Volume: 5 Issue: 4, 161 - 167, 20.12.2021
Following recent technological advancements, a great attention has been paid to mechanical behaviour of structural elements of nanosize. In this study, some solutions to mechanical problems of bars of nanosize is examined using Eringen’s two-phase nonlocal elasticity. Assuming the fraction coefficient of nonlocal part of the material is small, a perturbation expansion with respect to it is performed. With this procedure, the original nonlocal problem is broken into a set of local elasticity problems. Solutions to some example problems of nanobars are provided in closed-form for the first time, and commented on. The new solutions provided herein may well serve for benchmark studies, as well as identification of material parameters of nano-sized structural elements, such as carbon nanotubes.
Navier, C.-L.-M.-H. (1827) . Mémoire sur le lois de l’équilibre et du mouvement des corps solides élastiques (1821), Mémoires de l’Academie des Sciences de l’Institut de France, s. II, 7: 375–393.
Cauchy, A.-L. (1828) . Sur l’équilibre et le mouvement d’un système de points matériels sollicités par des forces d’attraction ou de répulsion mutuelle, Exercices de Mathématiques, 3, 188–213, 1822, 1827; Oeuvres, 2(8): 227–252 .
Poisson, S.D. (1829). Mémoire sur l’équilibre et le mouvement des corps élastiques 1828. Mémoires de l’Académie des Sciences de l’Institut de France, s. II, 8: 357–380.
Trovalusci, P., Capecchi, D., Ruta, G. (2009). Genesis of the multiscale approach for materials with microstructure. Archive of Applied Mechanics 79: 981-997.
Mindlin, R. D. (1964). Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 16(1): 51–78,.
Kunin, I. A. (1968). The theory of elastic media with microstructure and the theory of dislocation. Kröner, E. (Eds.), Mechanics of Generalized Continua, Springer, Berlin Heidelberg, p. 321.
Capriz, G. (1989). Continua with Microstructure. Springer Tracts in Natural Philosophy. Springer-Verlag.
Maugin, G.A. (1993). Material Inhomogeneities in Elasticity. Applied Mathematics. Taylor & Francis.
Eringen, A. C. (1999). Microcontinuum Field Theory. Springer.
Eringen, A. C. (2002). Nonlocal Continuum Field Theories. Springer-Verlag.
Rapaport, D.C. (1995). The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge.
Baggio, C., Trovalusci, P. (1998). Limit analysis for no-tension and friction three dimensional discrete systems. Mechanics of Structures and Mach., 26:287 – 304,.
Trovalusci, P. (2014). Molecular approaches for multifield continua: origins and current developments. Tomasz Sadowski and Patrizia Trovalusci (Eds.), Multiscale Modeling of Complex Materials: Phenomenological, Theoretical and Computational Aspects. Springer Vienna, p. 211–278.
Kunin, I. A. (1984). On foundations of the theory of elastic media with microstructure. International Journal of Engineering Sciences, 22(8):969 – 978.
Tuna, M., Leonetti, L., Trovalusci, P., Kirca, M. (2020). ‘Explicit’ and ‘implicit’ non-local continuous descriptions for a plate with circular inclusion in tension. Meccanica 55: 927–944.
Tuna, M., Trovalusci, P. (2020). Scale dependent continuum approaches for discontinuous assemblies: ’explicit’ and ’implicit’ non-local models. Mech. Res. Commun., 103:103461, 6 pages.
Abdollahi, R., Boroomand, B. (2013) Benchmarks in nonlocal elasticity defined by Eringen’s integral model. International Journal of Solids and Structures 50(18): 2758-2771.
Benvenuti, E., Simone, A. (2013). One-dimensional nonlocal and gradient elasticity: Closed-form solution and size effect. Mechanics Research Communications, 48: 46-51.
Zaera R., Serrano, Ó., Fernández-Sáez, J. (2019). On the consistency of the nonlocal strain gradient elasticity. International Journal of Engineering Sciences 138:65-81.
Eroglu, U. (2020). Perturbation approach to Eringen’s local/non-local constitutive equation with applications to 1-D structures. Meccanica, 55: 1119-1134.
Romano, G., Barretta, R., Diaco, M., de Sciarra, F.M. (2017). Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. International Journal of Mechanical Sciences 121:151-156.
Polyanin, P., Manzhirov, A. (2008). Handbook of integral equations. Chapman and Hall/CRC, London.
Eroğlu, U. (2021). Some New Approximate Solutions in Closed-Form to Problems of Nanobars. European Mechanical Science, 5(4), 161-167. https://doi.org/10.26701/ems.773106