Year 2022,
Volume: 6 Issue: 4, 233 - 240, 20.12.2022
Ahmet Çakan
,
Mustafa Uğurlu
References
- [1] Ogura, T., Saito, Y., Nishida, T., Nishida, H., Yoshida, T., Omichi, N., Fujimoto, M., Hirose, A., (2012). Partitioning evaluation of mechanical properties and the interfacial microstructure in a friction stir welded aluminum alloy/stainless steel lap joint, Scripta Materialia. 66(8): 531–534. https://doi.org/10.1016/j.scriptamat.2011.12.035.
- [2] Ogura, T., Nishida, T., Tanaka, Y., Nishida, H., Yoshikawa, S., Fujimoto, M., Hirose, A., (2013). Microscale evaluation of mechanical properties of friction stir welded A6061 aluminium alloy / 304 stainless steel dissimilar lap joint, Science and Technology of Welding and Joining. 18(2): 108–113. https://doi.org/10.1179/1362171812Y.0000000098.
- [3] Doruk, E., Pakdil, M., Çam, G., Durgun, İ., Kumru, U. C., (2016). Resistance spot welding applications in automotive industry. Engineer and Machinery, 57(673): 48-53.
- [4] Zhang, W., Sun, D., Han, L., Gao, W., Qiu, X., (2011). Characterization of intermetallic compounds in dissimilar material resistance spot welded joint of high strength steel and aluminum alloy. The Iron and Steel Institute of Japan. 51(11): 1870–1877. https://doi.org/10.2355/isijinternational.51.1870.
- [5] Cakan, A., Atmaca, H., Ugurlu, M., (2018). Analysis and joining of Al – Cu plates using friction stir welding technique. European Mechanical Science. 2(1): 1–8. https://doi.org/10.26701/ems.358729.
- [6] Cakan, A., Ugurlu, M., Kaygusuz, E., (2019). Effect of weld parameters on the microstructure and mechanical properties of dissimilar friction stir joints between pure copper and the aluminum alloy AA7075-T6. Materials Testing. 61(2): 142–148. https://doi.org/10.3139/120.111297.
- [7] Ugurlu, M., Cakan, A., (2019). The effect of tool rotation speed on mechanical properties of friction stir spot welded ( FSSW ) AA7075-T6 aluminium alloy. European Mechanical Science. 3: 97–101. https://doi.org/10.26701/ems.520139.
- [8] Çam, G., Javaheri, V., Heidarzadeh, A. (2022). Advances in FSW and FSSW of dissimilar Al-alloy plates. Journal of Adhesion Science and Technology, 1-33. https://doi.org/10.1080/01694243.2022.2028073.
- [9] Çam, G., (2011). Friction stir welded structural materials: beyond Al-alloys. International Materials Reviews, 56(1): 1-48. https://doi: 10.1179/095066010X12777205875750 10.
- [10] Çam, G., İpekoğlu, G., (2017). Recent developments in joining of aluminum alloys. The International Journal of Advanced Manufacturing Technology, 91(5): 1851-1866. https://doi.org/10.1007/s00170-016-9861-0. 11
- [11] Çam, G., İpekoğlu, G., Tarık Serindağ, H., (2014). Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints. Science and Technology of Welding and Joining, 19(8): 715-720. https://doi.org/10.1179/1362171814Y.0000000247.
- [12] Çam, G., Mistikoglu, S., Pakdil, M., (2009). Microstructural and mechanical characterization of friction stir butt joint welded 63% Cu-37% Zn brass plate. Welding Journal, 88(11): 225-232.
- [13] Küçükömeroğlu, T., Aktarer, S. M., Çam, G., (2019). Investigation of mechanical and microstructural properties of friction stir welded dual phase (DP) steel. In IOP Conference Series: Materials Science and Engineering. 629(1): 012010. https://doi.org/10.1088/1757-899X/629/1/012010.
- [14] Küçükömeroğlu, T., Aktarer, S. M., İpekoğlu, G., Çam, G., (2018). Mechanical properties of friction stir welded St 37 and St 44 steel joints. Materials Testing. 60(12): 1163-1170. https://doi.org/10.3139/120.111266.
- [15] İpekoğlu, G., Erim, S., Kıral, B. G., Çam, G., (2013). Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates. Kovove Materialy, 51(3): 155-163. https://doi.org/10.4149/km-2013-3-155. 16.
- [16] İpekoğlu, G., Çam, G., (2014). Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminum alloys. Metallurgical and Materials Transactions A, 45(7): 3074-3087.
- [17] İpekoglu, G., Çam, G., (2012). The effect of temper condition on friction stir welding of dissimilar Al-alloys (AA6061/AA7075) plates. Engineer and Machinery, 53(629): 40-47.
- [18] İpekoğlu, G., Gören Kıral, B., Erim, S., Çam, G., (2012). Investigation of the effect of temper condition on friction stir weldability of AA7075 Al-alloy plates. Materials Technology, 46(6): 627-632. https://doi.org/669.715:621.791:620.17.
- [19] Çam, G., (2005). Friction stir welding: A novel welding technique developed for Al-alloys. Engineer and Machinery. 46(541): 30-39.
- [20] Cam, G., Gucluer, S., Cakan, A., Serindag, H.T., (2009). Mechanical properties of friction stir butt-welded Al-5086 H32 plate, Materwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfüng, Eigenschaften und Anwendungen Technischer Werkstoffe. 40: 638–642. https://doi.org/10.1002/mawe.200800455.
- [21] Mahto, R.P., Kumar, R., Pal, S.K., (2020). Characterizations of weld defects, intermetallic compounds and mechanical properties of friction stir lap welded dissimilar alloys, Materials Characterization. 160: 110115. https://doi.org/10.1016/j.matchar.2019.110115.
- [22] Schneider, J., Radzilowski, R., (2014). Welding of very dissimilar materials (Fe-Al), Jom. 66(10): 2123–2129. https://doi.org/10.1007/s11837-014-1134-5.
- [23] Bozkurt, Y., Salman, S., Çam, G., (2013). Effect of welding parameters on lap shear tensile properties of dissimilar friction stir spot welded AA 5754-H22/2024-T3 joints. Science and Technology of Welding and Joining. 18(4): 337-345. https://doi.org/10.1179/1362171813Y-0000000111.
- [24] Ibrahim, H.K., Khuder, A.W.H., Muhammed, M.A.S., (2019). Effect of tool-pin geometry on microstructure and temperature distribution in friction stir spot welds of similar AA2024-T3 aluminum alloys. International Journal of Mechanical and Mechatronics Engineering. 19: 14–28.
- [25] Shen, Z., Ding, Y., Gerlich, A.P., (2019). Advances in friction stir spot welding, Critical Reviews in Solid State Materials Sciences. 8436. https://doi.org/10.1080/10408436.2019.1671799.
- [26] Li, M., Zhang, C., Wang, D., Zhou, L., Wellmann, D., Tian, Y., (2020). Friction stir spot welding of aluminum and copper: A review, Materials. 13(1): 156. https://doi.org/10.3390/ma13010156.
- [27] Sun, Y.F., Fujii, H., Takaki, N., Okitsu, Y., (2013). Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique. Materials and Design. 47: 350–357. https://doi.org/10.1016/j.matdes.2012.12.007.
- [28] Piccini, J.M., Svoboda, H.G., (2017). Tool geometry optimization in friction stir spot welding of Al-steel joints. Journal of Manufacturing Processes. 26: 142–154. https://doi.org/10.1016/j.jmapro.2017.02.004.
- [29] Sun, Y., Fujii, H., Zhu, S., Guan, S., (2019). Flat friction stir spot welding of three 6061-T6 aluminum sheets. Journal of Materials Processing Technology. 264: 414–421. https://doi.org/10.1016/j.jmatprotec.2018.09.031.
- [30] Wang, T., Sidhar, H., Mishra, R.S., Hovanski, Y., Upadhyah, P., Carlson, B., (2019). Evaluation of intermetallic compound layer at aluminum steel interface joined by friction stir scribe technology. Materials and Design. 174: 1–6. https://doi.org/10.1016/j.matdes.2019.107795.
- [31] Hsieh, M.J., Lee, R.T., Chiou, Y.C., (2017). Friction stir spot fusion welding of low carbon steel to aluminium alloy. Journal of Materials Processing Technology. 240: 118–125. https://doi.org/10.1016/j.matprotec.2016.08.034.
- [32] Haghshenas, M., Abdel-Gwad, A., Omran, A.M., Gokce, B., Sahraeinejad, S., Gerlich, A.P., (2014). Friction stir weld assisted diffusion bonding of 5754 aluminum alloy to coated high strength steels. Materials and Design. 55: 442–449. https://doi.org/10.1016/j.matdes.2013.10.013.
- [33] Fereiduni, E., Movahedi, M., Kokabi, A.H., (2015). Aluminum/steel joints made by an alternative friction stir spot welding process. Journal of Materials Processing Technology. 224: 1–10. https://doi.org/10.1016/j.jmatprotec.2015.04.028.
- [34] Su, P., Gerlich, A., North, T.H., Bendzsak, G.J., (2007). Intermixing in dissimilar friction stir spot welds. Metallurgical and Materials Transactions A. 38: 584–595. https://doi.org/10.1007/s11661-006-9067-4.
- [35] Yamamoto, M., Gerlich, A., North, T.H., Shinozaki, K., (2008). Cracking in dissimilar Mg alloy friction stir spot welds. Science and Technology of Welding and Joining. 13(7): 583–592. https://doi.org/10.1179/174329308X349520.
- [36] Mahto, R.P., Gupta, C., Kinjawadekar, M., Meena, A., Pal, S.K., (2019). Weldability of AA6061-T6 and AISI 304 by underwater friction stir welding. Journal of Manufacturing Processes. 38: 370–386. https://doi.org/10.1016/j.jmapro.2019.01.028.
- [37] Esmaeili, A., Zareie Rajani, H.R., Sharbati, M., Givi, M.K.B., Shamanian, M., (2011). The role of rotation speed on intermetallic compounds formation and mechanical behavior of friction stir welded brass/aluminum 1050 couple. Intermetallics. 19(11): 1711–1719. https://doi.org/10.1016/j.intermet.2011.07.006.
- [38] Bozzi, S., Helbert-Etter, A.L., Baudin, T., Criqui, B., Kerbiguet, J.G., (2010). Intermetallic compounds in Al 6016/IF-steel friction stir spot welds. Materials Science and Engineering: A. 527(16-17): 4505–4509. https://doi.org/10.1016/j.msea.2010.03.097.
- [39] Ahmed, E., Makoto, T., Kenji, I., (2005). Friction stir welded lap joint of aluminum to zinc coated steel. Quarterly Journal of the Japan Welding Society. 23(2): 186–193. https://doi.org/10.2207/qjjws.23.186.
- [40] Elrefaey, A., Gouda, M., Takahashi, M., Ikeuchi, K., (2005). Characterization of aluminum/steel lap joint by friction stir welding. Journal of Materials Engineering and Performance. 14(1): 10–17. https://doi.org/10.1361/10599490522310.
- [41] Das, H., Basak, S., Das, G., Pal, T.K., (2013). Influence of energy induced from processing parameters on the mechanical properties of friction stir welded lap joint of aluminum to coated steel sheet. The International Journal of Advanced Manufacturing Technology. 64(9): 1653–1661. https://doi.org/10.1007/s00170-012-4130-3.
- [42] Jiang, W.H., Kovacevic, R., (2004). Feasibility study of friction stir welding of 6061-T6 aluminium alloy with AISI 1018 steel. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 218(10): 1323–1331. https://doi.org/10.1243/0954405042323612.
- [43] Lee, I.S., Kao, P.W., Ho, N.J., (2008). Microstructure and mechanical properties of Al–Fe in situ nanocomposite produced by friction stir processing. Intermetallics. 16(9): 1104–1108. https://doi.org/10.1016/j.intermet.2008.06.017.
- [44] Das, H., Jana, S.S., Pal, T.K., De, A., (2014). Numerical and experimental investigation on friction stir lap welding of aluminium to steel. Science and Technology of Welding and Joining. 19(1): 69–75. https://doi.org/10.1179/1362171813Y.0000000166.
- [45] Choi, D.H., Ahn, B.W., Lee, C.Y., Yeon, Y.M., Song, K., Jung, S.B., (2011). Formation of intermetallic compounds in Al and Mg alloy interface during friction stir spot welding, Intermetallics. 19(2): 125–130. https://doi.org/10.1016/j.intermet.2010.08.030.
- [46] Venukumar, S., Yalagi, S., Muthukumaran, S., (2013). Comparison of microstructure and mechanical properties of conventional and refilled friction stir spot welds in AA 6061-T6 using filler plate. Transactions of Nonferrous Metals Society of China. 23(10): 2833–2842. https://doi.org/10.1016/S1003-6326(13)62804-6.
Investigation of weld defects and mechanical properties of dissimilar friction stir spot welded dual phase (DP600) steel and aluminum alloy (AA 7075-T6) plates
Year 2022,
Volume: 6 Issue: 4, 233 - 240, 20.12.2022
Ahmet Çakan
,
Mustafa Uğurlu
Abstract
DP600 steel and AA7075-T6 aluminium alloy plates were joined using the friction stir spot welding process. The effects of different tool rotational speeds on the mechanical properties, intermetallic compound formation and interface microstructure of welded joints were investigated. The highest lap shear tensile load was obtained from the samples joined at a rotational speed of 1040 rpm (6.5 kN). It was determined that the tensile load of the welded joint decreased with increasing tool rotational speed. XRD analysis performed on broken surfaces, the intermetallic phase was determined to be Al13Fe4. As a result of Vickers microhardness tests, the samples joined at 1320 rpm and 1500 rpm, in the structure of which intermetallic compounds were determined by XRD analysis, displayed higher hardness values. In addition, when scanning electron microscope images were examined, it was determined that the cracks observed in the samples and the porosity both increased with increasing tool rotational speed.
References
- [1] Ogura, T., Saito, Y., Nishida, T., Nishida, H., Yoshida, T., Omichi, N., Fujimoto, M., Hirose, A., (2012). Partitioning evaluation of mechanical properties and the interfacial microstructure in a friction stir welded aluminum alloy/stainless steel lap joint, Scripta Materialia. 66(8): 531–534. https://doi.org/10.1016/j.scriptamat.2011.12.035.
- [2] Ogura, T., Nishida, T., Tanaka, Y., Nishida, H., Yoshikawa, S., Fujimoto, M., Hirose, A., (2013). Microscale evaluation of mechanical properties of friction stir welded A6061 aluminium alloy / 304 stainless steel dissimilar lap joint, Science and Technology of Welding and Joining. 18(2): 108–113. https://doi.org/10.1179/1362171812Y.0000000098.
- [3] Doruk, E., Pakdil, M., Çam, G., Durgun, İ., Kumru, U. C., (2016). Resistance spot welding applications in automotive industry. Engineer and Machinery, 57(673): 48-53.
- [4] Zhang, W., Sun, D., Han, L., Gao, W., Qiu, X., (2011). Characterization of intermetallic compounds in dissimilar material resistance spot welded joint of high strength steel and aluminum alloy. The Iron and Steel Institute of Japan. 51(11): 1870–1877. https://doi.org/10.2355/isijinternational.51.1870.
- [5] Cakan, A., Atmaca, H., Ugurlu, M., (2018). Analysis and joining of Al – Cu plates using friction stir welding technique. European Mechanical Science. 2(1): 1–8. https://doi.org/10.26701/ems.358729.
- [6] Cakan, A., Ugurlu, M., Kaygusuz, E., (2019). Effect of weld parameters on the microstructure and mechanical properties of dissimilar friction stir joints between pure copper and the aluminum alloy AA7075-T6. Materials Testing. 61(2): 142–148. https://doi.org/10.3139/120.111297.
- [7] Ugurlu, M., Cakan, A., (2019). The effect of tool rotation speed on mechanical properties of friction stir spot welded ( FSSW ) AA7075-T6 aluminium alloy. European Mechanical Science. 3: 97–101. https://doi.org/10.26701/ems.520139.
- [8] Çam, G., Javaheri, V., Heidarzadeh, A. (2022). Advances in FSW and FSSW of dissimilar Al-alloy plates. Journal of Adhesion Science and Technology, 1-33. https://doi.org/10.1080/01694243.2022.2028073.
- [9] Çam, G., (2011). Friction stir welded structural materials: beyond Al-alloys. International Materials Reviews, 56(1): 1-48. https://doi: 10.1179/095066010X12777205875750 10.
- [10] Çam, G., İpekoğlu, G., (2017). Recent developments in joining of aluminum alloys. The International Journal of Advanced Manufacturing Technology, 91(5): 1851-1866. https://doi.org/10.1007/s00170-016-9861-0. 11
- [11] Çam, G., İpekoğlu, G., Tarık Serindağ, H., (2014). Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints. Science and Technology of Welding and Joining, 19(8): 715-720. https://doi.org/10.1179/1362171814Y.0000000247.
- [12] Çam, G., Mistikoglu, S., Pakdil, M., (2009). Microstructural and mechanical characterization of friction stir butt joint welded 63% Cu-37% Zn brass plate. Welding Journal, 88(11): 225-232.
- [13] Küçükömeroğlu, T., Aktarer, S. M., Çam, G., (2019). Investigation of mechanical and microstructural properties of friction stir welded dual phase (DP) steel. In IOP Conference Series: Materials Science and Engineering. 629(1): 012010. https://doi.org/10.1088/1757-899X/629/1/012010.
- [14] Küçükömeroğlu, T., Aktarer, S. M., İpekoğlu, G., Çam, G., (2018). Mechanical properties of friction stir welded St 37 and St 44 steel joints. Materials Testing. 60(12): 1163-1170. https://doi.org/10.3139/120.111266.
- [15] İpekoğlu, G., Erim, S., Kıral, B. G., Çam, G., (2013). Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates. Kovove Materialy, 51(3): 155-163. https://doi.org/10.4149/km-2013-3-155. 16.
- [16] İpekoğlu, G., Çam, G., (2014). Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminum alloys. Metallurgical and Materials Transactions A, 45(7): 3074-3087.
- [17] İpekoglu, G., Çam, G., (2012). The effect of temper condition on friction stir welding of dissimilar Al-alloys (AA6061/AA7075) plates. Engineer and Machinery, 53(629): 40-47.
- [18] İpekoğlu, G., Gören Kıral, B., Erim, S., Çam, G., (2012). Investigation of the effect of temper condition on friction stir weldability of AA7075 Al-alloy plates. Materials Technology, 46(6): 627-632. https://doi.org/669.715:621.791:620.17.
- [19] Çam, G., (2005). Friction stir welding: A novel welding technique developed for Al-alloys. Engineer and Machinery. 46(541): 30-39.
- [20] Cam, G., Gucluer, S., Cakan, A., Serindag, H.T., (2009). Mechanical properties of friction stir butt-welded Al-5086 H32 plate, Materwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfüng, Eigenschaften und Anwendungen Technischer Werkstoffe. 40: 638–642. https://doi.org/10.1002/mawe.200800455.
- [21] Mahto, R.P., Kumar, R., Pal, S.K., (2020). Characterizations of weld defects, intermetallic compounds and mechanical properties of friction stir lap welded dissimilar alloys, Materials Characterization. 160: 110115. https://doi.org/10.1016/j.matchar.2019.110115.
- [22] Schneider, J., Radzilowski, R., (2014). Welding of very dissimilar materials (Fe-Al), Jom. 66(10): 2123–2129. https://doi.org/10.1007/s11837-014-1134-5.
- [23] Bozkurt, Y., Salman, S., Çam, G., (2013). Effect of welding parameters on lap shear tensile properties of dissimilar friction stir spot welded AA 5754-H22/2024-T3 joints. Science and Technology of Welding and Joining. 18(4): 337-345. https://doi.org/10.1179/1362171813Y-0000000111.
- [24] Ibrahim, H.K., Khuder, A.W.H., Muhammed, M.A.S., (2019). Effect of tool-pin geometry on microstructure and temperature distribution in friction stir spot welds of similar AA2024-T3 aluminum alloys. International Journal of Mechanical and Mechatronics Engineering. 19: 14–28.
- [25] Shen, Z., Ding, Y., Gerlich, A.P., (2019). Advances in friction stir spot welding, Critical Reviews in Solid State Materials Sciences. 8436. https://doi.org/10.1080/10408436.2019.1671799.
- [26] Li, M., Zhang, C., Wang, D., Zhou, L., Wellmann, D., Tian, Y., (2020). Friction stir spot welding of aluminum and copper: A review, Materials. 13(1): 156. https://doi.org/10.3390/ma13010156.
- [27] Sun, Y.F., Fujii, H., Takaki, N., Okitsu, Y., (2013). Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique. Materials and Design. 47: 350–357. https://doi.org/10.1016/j.matdes.2012.12.007.
- [28] Piccini, J.M., Svoboda, H.G., (2017). Tool geometry optimization in friction stir spot welding of Al-steel joints. Journal of Manufacturing Processes. 26: 142–154. https://doi.org/10.1016/j.jmapro.2017.02.004.
- [29] Sun, Y., Fujii, H., Zhu, S., Guan, S., (2019). Flat friction stir spot welding of three 6061-T6 aluminum sheets. Journal of Materials Processing Technology. 264: 414–421. https://doi.org/10.1016/j.jmatprotec.2018.09.031.
- [30] Wang, T., Sidhar, H., Mishra, R.S., Hovanski, Y., Upadhyah, P., Carlson, B., (2019). Evaluation of intermetallic compound layer at aluminum steel interface joined by friction stir scribe technology. Materials and Design. 174: 1–6. https://doi.org/10.1016/j.matdes.2019.107795.
- [31] Hsieh, M.J., Lee, R.T., Chiou, Y.C., (2017). Friction stir spot fusion welding of low carbon steel to aluminium alloy. Journal of Materials Processing Technology. 240: 118–125. https://doi.org/10.1016/j.matprotec.2016.08.034.
- [32] Haghshenas, M., Abdel-Gwad, A., Omran, A.M., Gokce, B., Sahraeinejad, S., Gerlich, A.P., (2014). Friction stir weld assisted diffusion bonding of 5754 aluminum alloy to coated high strength steels. Materials and Design. 55: 442–449. https://doi.org/10.1016/j.matdes.2013.10.013.
- [33] Fereiduni, E., Movahedi, M., Kokabi, A.H., (2015). Aluminum/steel joints made by an alternative friction stir spot welding process. Journal of Materials Processing Technology. 224: 1–10. https://doi.org/10.1016/j.jmatprotec.2015.04.028.
- [34] Su, P., Gerlich, A., North, T.H., Bendzsak, G.J., (2007). Intermixing in dissimilar friction stir spot welds. Metallurgical and Materials Transactions A. 38: 584–595. https://doi.org/10.1007/s11661-006-9067-4.
- [35] Yamamoto, M., Gerlich, A., North, T.H., Shinozaki, K., (2008). Cracking in dissimilar Mg alloy friction stir spot welds. Science and Technology of Welding and Joining. 13(7): 583–592. https://doi.org/10.1179/174329308X349520.
- [36] Mahto, R.P., Gupta, C., Kinjawadekar, M., Meena, A., Pal, S.K., (2019). Weldability of AA6061-T6 and AISI 304 by underwater friction stir welding. Journal of Manufacturing Processes. 38: 370–386. https://doi.org/10.1016/j.jmapro.2019.01.028.
- [37] Esmaeili, A., Zareie Rajani, H.R., Sharbati, M., Givi, M.K.B., Shamanian, M., (2011). The role of rotation speed on intermetallic compounds formation and mechanical behavior of friction stir welded brass/aluminum 1050 couple. Intermetallics. 19(11): 1711–1719. https://doi.org/10.1016/j.intermet.2011.07.006.
- [38] Bozzi, S., Helbert-Etter, A.L., Baudin, T., Criqui, B., Kerbiguet, J.G., (2010). Intermetallic compounds in Al 6016/IF-steel friction stir spot welds. Materials Science and Engineering: A. 527(16-17): 4505–4509. https://doi.org/10.1016/j.msea.2010.03.097.
- [39] Ahmed, E., Makoto, T., Kenji, I., (2005). Friction stir welded lap joint of aluminum to zinc coated steel. Quarterly Journal of the Japan Welding Society. 23(2): 186–193. https://doi.org/10.2207/qjjws.23.186.
- [40] Elrefaey, A., Gouda, M., Takahashi, M., Ikeuchi, K., (2005). Characterization of aluminum/steel lap joint by friction stir welding. Journal of Materials Engineering and Performance. 14(1): 10–17. https://doi.org/10.1361/10599490522310.
- [41] Das, H., Basak, S., Das, G., Pal, T.K., (2013). Influence of energy induced from processing parameters on the mechanical properties of friction stir welded lap joint of aluminum to coated steel sheet. The International Journal of Advanced Manufacturing Technology. 64(9): 1653–1661. https://doi.org/10.1007/s00170-012-4130-3.
- [42] Jiang, W.H., Kovacevic, R., (2004). Feasibility study of friction stir welding of 6061-T6 aluminium alloy with AISI 1018 steel. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 218(10): 1323–1331. https://doi.org/10.1243/0954405042323612.
- [43] Lee, I.S., Kao, P.W., Ho, N.J., (2008). Microstructure and mechanical properties of Al–Fe in situ nanocomposite produced by friction stir processing. Intermetallics. 16(9): 1104–1108. https://doi.org/10.1016/j.intermet.2008.06.017.
- [44] Das, H., Jana, S.S., Pal, T.K., De, A., (2014). Numerical and experimental investigation on friction stir lap welding of aluminium to steel. Science and Technology of Welding and Joining. 19(1): 69–75. https://doi.org/10.1179/1362171813Y.0000000166.
- [45] Choi, D.H., Ahn, B.W., Lee, C.Y., Yeon, Y.M., Song, K., Jung, S.B., (2011). Formation of intermetallic compounds in Al and Mg alloy interface during friction stir spot welding, Intermetallics. 19(2): 125–130. https://doi.org/10.1016/j.intermet.2010.08.030.
- [46] Venukumar, S., Yalagi, S., Muthukumaran, S., (2013). Comparison of microstructure and mechanical properties of conventional and refilled friction stir spot welds in AA 6061-T6 using filler plate. Transactions of Nonferrous Metals Society of China. 23(10): 2833–2842. https://doi.org/10.1016/S1003-6326(13)62804-6.