Review
BibTex RIS Cite
Year 2024, Volume: 8 Issue: 2, 104 - 114, 20.06.2024
https://doi.org/10.26701/ems.1440630

Abstract

Project Number

KÜBAP - -1/2023-18.

References

  • Naser, A. Z., Deiab, I., & Darras, B. M. (2021). Poly (lactic acid)(PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review. RSC Advances, 11(28), 17151-17196. https://doi.org/10.1039/D1RA02390J
  • Wu, Y., Gao, X., Wu, J., Zhou, T., Nguyen, T. T., & Wang, Y. (2023). Biodegradable polylactic acid and its composites: Characteristics, processing, and sustainable applications in sports. Polymers, 15(14), 3096. https://doi.org/10.3390/polym15143096
  • Ilyas, R. A., Sapuan, S. M., Harussani, M. M., Hakimi, M. Y. A. Y., Haziq, M. Z. M., Atikah, M. S. N., & Asrofi, M. (2021). Polylactic acid (PLA) biocomposite: Processing, additive manufacturing and advanced applications. Polymers, 13(8), 1326. https://doi.org/10.3390/polym13081326
  • Fattahi, F. S., Khoddami, A., & Avinc, O. (2020). Sustainable, renewable, and biodegradable poly (lactic acid) fibers and their latest developments in the last decade. In Sustainability in the Textile and Apparel Industries: Sourcing Synthetic and Novel Alternative Raw Materials (pp. 173-194). Springer. https://doi.org/10.1007/978-3-030-38013-7_9
  • De Smit, K., Marien, Y. W., Van Steenberge, P. H. M., D’hooge, D. R., & Edeleva, M. (2023). Playing with process conditions to increase the industrial sustainability of poly (lactic acid)-based materials. Reaction Chemistry & Engineering, 8(7), 1598-1612. https://doi.org/10.1039/D2RE00577H
  • Mehmood, A., Raina, N., Phakeenuya, V., Wonganu, B., & Cheenkachorn, K. (2023). The current status and market trend of polylactic acid as biopolymer: Awareness and needs for sustainable development. Materials Today: Proceedings, 72, 3049-3055. https://doi.org/10.1016/j.matpr.2022.08.387
  • Ebrahimi, F., & Ramezani Dana, H. (2022). Poly lactic acid (PLA) polymers: From properties to biomedical applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 71(15), 1117-1130. https://doi.org/10.1080/00914037.2021.1944140
  • Ilyas, R. A., Zuhri, M. Y. M., Aisyah, H. A., Asyraf, M. R. M., Hassan, S. A., Zainudin, E. S., & Sari, N. H. (2022). Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers, 14(1), 202. https://doi.org/10.3390/polym14010202
  • Di Lorenzo, M. L., & Androsch, R. (2018). Industrial applications of poly (lactic acid). Cham: Springer. https://doi.org/10.1007/978-3-319-75459-8
  • Pérez-Fonseca, A. A., Rodrigue, D., Martín Del Campo, A. S., & Robledo-Ortíz, J. R. (2024). Polylactic acid-agave fiber biocomposites: Processing, properties, weathering performance, and biodegradation. In Polylactic Acid Composites (pp. 13-30). De Gruyter. https://doi.org/10.1515/9783111067285-002
  • Cao, D. (2024). Increasing strength and ductility of extruded polylactic acid matrix composites using short polyester and continuous carbon fibers. The International Journal of Advanced Manufacturing Technology, 1-17. https://doi.org/10.1007/s00170-023-12887-9
  • Nagarajan, V., Mohanty, A. K., & Misra, M. (2016). Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustainable Chemistry & Engineering, 4(6), 2899-2916. https://doi.org/10.1021/acssuschemeng.6b00321
  • Dong, Y., Milentis, J., & Pramanik, A. (2018). Additive manufacturing of mechanical testing samples based on virgin poly (lactic acid)(PLA) and PLA/wood fibre composites. Advances in Manufacturing, 6, 71-82. https://doi.org/10.1007/s40436-018-0211-3
  • Anderson, I. (2017). Mechanical properties of specimens 3D printed with virgin and recycled polylactic acid. 3D Printing and Additive Manufacturing, 4(2), 110-115. https://doi.org/10.1089/3dp.2016.0054
  • Vidakis, N., Petousis, M., Kourinou, M., Velidakis, E., Mountakis, N., Fischer-Griffiths, P. E., & Tzounis, L. (2021). Additive manufacturing of multifunctional polylactic acid (PLA)—Multiwalled carbon nanotubes (MWCNTs) nanocomposites. Nanocomposites, 7(1), 184-199. https://doi.org/10.1080/20550324.2021.2000231
  • Yılmaz, M., Yılmaz, N. F., Kılıç, A., & Mazı, H. (2024). Investigation of manufacturability of in-situ crosslinked polylactic acid (PLA) and peroxide composite in additive manufacturing. Journal of the Faculty of Engineering and Architecture of Gazi University, 39(2), 859-867. https://doi.org/10.17341/gazimmfd.1213974
  • Wang, X., Huang, L., Li, Y., Wang, Y., Lu, X., Wei, Z., & Liu, Y. (2024). Research progress in polylactic acid processing for 3D printing. Journal of Manufacturing Processes, 112, 161-178. https://doi.org/10.1016/j.jmapro.2024.01.038
  • González-López, M. A., González-López, J. A., Reyes-Morales, Q. L., Pereyra, I., & Mayen, J. (2024). Modifying the manufacturing process of high-graphite content polylactic acid filament for advanced energy and sensing applications in 3D printing. Polymer, 292, 126661. https://doi.org/10.1016/j.polymer.2023.126661
  • Demir, S., Yüksel, C., & Akpınar, F. (2024). Investigation of the mechanical response of hexagonal lattice cylindrical structure fabricated with polylactic acid 3D printing. Journal of Materials Engineering and Performance, 1-14. https://doi.org/10.1007/s11665-024-09155-6
  • Bayram, M., Ustaoglu, A., Kursuncu, B., Hekimoglu, G., Sari, A., Uğur, L. O., & Ozbakkaloglu, T. (2024). 3D-printed polylactic acid-microencapsulated phase change material composites for building thermal management. Renewable and Sustainable Energy Reviews, 191, 114150. https://doi.org/10.1016/j.rser.2023.114150
  • Sharma, S., Gupta, V., Mudgal, D., & Srivastava, V. (2024). Optimization of polydopamine coating process for poly lactic acid‐based 3D printed bone plates using machine learning approaches. Polymer Engineering & Science. https://doi.org/10.1002/pen.26546
  • Fahim, I. S., Abdelrahman, K., Mostafa, A., & Hazem, N. (2024). Polylactic acid-based bionanocomposites: Synthesis, properties, and applications. In Advances in Bionanocomposites (pp. 93-116). Elsevier. https://doi.org/10.1016/B978-0-323-91764-3.00014-0
  • Molinari, G., Parlanti, P., Aliotta, L., Lazzeri, A., & Gemmi, M. (2024). TEM morphological analysis of biopolymers: The case of Poly (Lactic Acid)(PLA). Materials Today Communications, 38, 107868. https://doi.org/10.1016/j.mtcomm.2023.107868
  • Tessanan, W., Phinyocheep, P., & Amornsakchai, T. (2024). Sustainable materials with improved biodegradability and toughness from blends of poly (lactic acid), pineapple stem starch and modified natural rubber. Polymers, 16(2), 232. https://doi.org/10.3390/polym16020232
  • Letcher, T., & Waytashek, M. (2014). Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer. In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). https://doi.org/10.1115/IMECE2014-39379
  • Kaygusuz, B., & Özerinç, S. (2018). 3 Boyutlu yazıcı ile üretilen PLA bazlı yapıların mekanik özelliklerinin incelenmesi. Makine Tasarım ve İmalat Dergisi, 16(1), 1-6.
  • Çiçek, Ö. Y. (2019). Eriyik yığma modelleme ile üretilen ABS ve PLA parçaların mekanik özelliklerinin değişken dolgu oranlarında karakterizasyonu ve sayısal modellemesi (Master’s thesis). İstanbul Teknik Üniversitesi/Fen Bilimleri Enstitüsü, İstanbul.
  • Mansingh, B. B., Binoj, J. S., Tan, Z. Q., Wong, W. L. E., Amornsakchai, T., Hassan, S. A., & Goh, K. L. (2023). Characterization and performance of additive manufactured novel bio-waste polylactic acid eco-friendly composites. Journal of Polymers and the Environment, 31(6), 2306-2320. https://doi.org/10.1007/s10924-023-02758-5
  • Sajna, V., Nayak, S. K., & Mohanty, S. (2016). Weathering and biodegradation study on graft copolymer compatibilized hybrid bionanocomposites of poly(lactic acid). Journal of Materials Engineering and Performance, 25(7), 2895-2906. https://doi.org/10.1007/s11665-016-2151-z
  • Arrieta, M. P., Samper, M., Aldas, M., & López, J. (2017). On the use of PLA-PHB blends for sustainable food packaging applications. Materials, 10(9), 10087. https://doi.org/10.3390/ma10091008
  • Ausejo, J. G., Rydz, J., Musioł, M., Sikorska, W., Janeczek, H., Sobota, M., Włodarczyk Szeluga, J. U., Hercog, A., & Kowalczuk, M. (2018). Three-dimensional printing of PLA and PLA/PHA dumbbell-shaped specimens of crisscross and transverse patterns as promising materials in emerging application areas: Prediction study. Polymer Degradation and Stability, 156, 100-110. https://doi.org/10.1016/j.polymdegradstab.2018.08.008
  • Ayrilmis, N. (2018). Effect of layer thickness on surface properties of 3D printed materials produced from wood flour/PLA filament. Polymer Testing, 71, 163-166. https://doi.org/10.1016/j.polymertesting.2018.09.009
  • Patan, Z. Y. (2019). Karbon fiber takviyeli ABS kompozitlerin FDM 3D yazıcı ile üretimi ve Ansys ile modellenmesi (Master’s thesis). Çanakkale Onsekiz Mart Üniversitesi/Fen Bilimleri Enstitüsü, Çanakkale.
  • Przekop, R. E., Kujawa, M., Pawlak, W., Dobrosielska, M., Sztorch, B., & Wieleba, W. (2020). Graphite modified polylactide (PLA) for 3D printed (FDM/FFF) sliding elements. Polymers, 12(6), 1250. https://doi.org/10.3390/polym12061250
  • Uzun, M., & Erdoğdu, Y. E. (2020). Eriyik yığma modellemesi ile üretimde takviyesiz ve takviyeli PLA kullanımının mekanik özelliklere etkisinin araştırılması. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(4), 2800-2808. https://doi.org/10.21597/jist.799230
  • Thakur, V., Kumar, R., Kumar, R., Singh, R., & Kumar, V. (2024). Hybrid additive manufacturing of highly sustainable polylactic acid-carbon fiber-polylactic acid sandwiched composite structures: Optimization and machine learning. Journal of Thermoplastic Composite Materials. https://doi.org/10.1177/08927057231180186
  • Rajeshkumar, G., Seshadri, S. A., Devnani, G. L., Sanjay, M. R., Siengchin, S., Maran, J. P., ... & Anuf, A. R. (2021). Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites–A comprehensive review. Journal of Cleaner Production, 310, 127483. https://doi.org/10.1016/j.jclepro.2021.127483
  • Rezvani Ghomi, E., Khosravi, F., Saedi Ardahaei, A., Dai, Y., Neisiany, R. E., Foroughi, F., ... & Ramakrishna, S. (2021). The life cycle assessment for polylactic acid (PLA) to make it a low-carbon material. Polymers, 13(11), 1854. https://doi.org/10.3390/polym13111854
  • Zhang, M., & Thomas, N. L. (2011). Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Advances in Polymer Technology, 30(2), 67-79. https://doi.org/10.1002/adv.20235
  • Kamau-Devers, K., Kortum, Z., & Miller, S. A. (2019). Hydrothermal aging of bio-based poly(lactic acid) (PLA) wood polymer composites: Studies on sorption behavior, morphology, and heat conductance. Construction and Building Materials, 214, 290-302. https://doi.org/10.1016/j.conbuildmat.2019.04.098
  • Kakanuru, P., & Pochiraju, K. (2020). Moisture ingress and degradation of additively manufactured PLA, ABS and PLA/SiC composite parts. Additive Manufacturing, 36, 101529. https://doi.org/10.1016/j.addma.2020.101529
  • Nandhini, R., Sivaprakash, B., Rajamohan, N., & Vo, D. V. N. (2023). Lignin and polylactic acid for the production of bioplastics and valuable chemicals. Environmental Chemistry Letters, 21(1), 403-427. https://doi.org/10.1007/s10311-022-01505-x
  • Siracusa, V., Karpova, S., Olkhov, A., Zhulkina, A., Kosenko, R., & Iordanskii, A. (2020). Gas transport phenomena and polymer dynamics in PHB/PLA blend films as potential packaging materials. Polymers, 12(3), 647. https://doi.org/10.3390/polym12030647
  • Johansson, M., Skrifvars, M., Kadi, N., & Dhakal, H. N. (2023). Effect of lignin acetylation on the mechanical properties of lignin-poly-lactic acid biocomposites for advanced applications. Industrial Crops and Products, 202, 117049. https://doi.org/10.1016/j.indcrop.2023.117049
  • Tripathi, N., Misra, M., & Mohanty, A. K. (2021). Durable polylactic acid (PLA)-based sustainable engineered blends and biocomposites: Recent developments, challenges, and opportunities. ACS Engineering Au, 1(1), 7-38. https://doi.org/10.1021/acsengineeringau.1c00011
  • Ferreira, E. D. S. B., Luna, C. B. B., Siqueira, D. D., dos Santos Filho, E. A., Araújo, E. M., & Wellen, R. M. R. (2021). Production of eco-sustainable materials: Compatibilizing action in poly (lactic acid)/high-density biopolyethylene bioblends. Sustainability, 13(21), 12157. https://doi.org/10.3390/su132112157
  • Harris, A. M., & Lee, E. C. (2010). Heat and humidity performance of injection molded PLA for durable applications. Journal of Applied Polymer Science, 115, 1380-1389. https://doi.org/10.1002/app.30815
  • Porfyris, A., Vasilakos, S., Zotiadis, C., Papaspyrides, C., Moser, K., Schueren, L., Buyle, G., Pavlidou, S., & Vouyiouka, S. (2018). Accelerated ageing and hydrolytic stabilization of poly(lactic acid) (PLA) under humidity and temperature conditioning. Polymer Testing, 68, 315-332. https://doi.org/10.1016/j.polymertesting.2018.04.018
  • Guo, R., Ren, Z., Bi, H., Xu, M., & Cai, L. (2019). Electrical and thermal conductivity of polylactic acid (PLA)-based bio composites by incorporation of nano-graphite fabricated with fused deposition modeling. Polymers, 11(3), 549. https://doi.org/10.3390/polym11030549
  • Alkan Goksu, Y. (2024). Enhancing the sustainability of poly (lactic acid) (PLA) through ketene-based chain extension. Journal of Polymers and the Environment, 1-14. https://doi.org/10.1007/s10924-023-03171-8
  • Ramezani Dana, H., & Ebrahimi, F. (2023). Synthesis, properties, and applications of polylactic acid‐based polymers. Polymer Engineering & Science, 63(1), 22-43. https://doi.org/10.1002/pen.26193

Advancements in polylactic acid research: From material properties to sustainable applications

Year 2024, Volume: 8 Issue: 2, 104 - 114, 20.06.2024
https://doi.org/10.26701/ems.1440630

Abstract

This review article provides a comprehensive examination of the latest advancements in the research and development of Polylactic Acid (PLA) and its composites, with a focus on enhancing material properties and exploring sustainable applications. As a biodegradable and bio-base polymer, PLA has emerged as a promising alternative to conventional petroleum-based plastics across various industries, including packaging, 3D printing, and biomedical fields. The review delves into studies investigating the effects of environmental conditions on PLA’s hydrolytic stability and structural integrity, as well as the benefits of blending PLA with other biopolymers to improve its mechanical properties. It also covers research on optimizing three dimensional printing parameters for PLA, underscoring the importance of raster orientation and print layer thickness in achieving desired mechanical strength and object durability. Additionally, the incorporation of nanofillers and copolymers is discussed as a strategy for enhancing PLA’s moisture resistance and overall performance. By summarizing key findings from a wide range of studies, this article aims to shed light on the significant progress made in PLA research, while pointing out future research directions to resolve existing limitations and fully capitalize on PLA’s potential as a green material solution. To better cater to the needs of design engineers, this review highlights how advancements in PLA research can be directly applied to improve product design and functionality. Specifically, it discusses the enhanced mechanical properties, sustainability benefits, and versatility of PLA in various industrial applications, providing engineers with a deeper understanding of how to utilize PLA in eco-friendly design solutions.

Ethical Statement

Etik kurul iznine ihtiyaç bulunmamaktadır.

Supporting Institution

Kastamonu University

Project Number

KÜBAP - -1/2023-18.

Thanks

The authors would like to thank Kastamonu University and the project unit staff for the support of the project numbered KÜBAP-1/2023-18.

References

  • Naser, A. Z., Deiab, I., & Darras, B. M. (2021). Poly (lactic acid)(PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review. RSC Advances, 11(28), 17151-17196. https://doi.org/10.1039/D1RA02390J
  • Wu, Y., Gao, X., Wu, J., Zhou, T., Nguyen, T. T., & Wang, Y. (2023). Biodegradable polylactic acid and its composites: Characteristics, processing, and sustainable applications in sports. Polymers, 15(14), 3096. https://doi.org/10.3390/polym15143096
  • Ilyas, R. A., Sapuan, S. M., Harussani, M. M., Hakimi, M. Y. A. Y., Haziq, M. Z. M., Atikah, M. S. N., & Asrofi, M. (2021). Polylactic acid (PLA) biocomposite: Processing, additive manufacturing and advanced applications. Polymers, 13(8), 1326. https://doi.org/10.3390/polym13081326
  • Fattahi, F. S., Khoddami, A., & Avinc, O. (2020). Sustainable, renewable, and biodegradable poly (lactic acid) fibers and their latest developments in the last decade. In Sustainability in the Textile and Apparel Industries: Sourcing Synthetic and Novel Alternative Raw Materials (pp. 173-194). Springer. https://doi.org/10.1007/978-3-030-38013-7_9
  • De Smit, K., Marien, Y. W., Van Steenberge, P. H. M., D’hooge, D. R., & Edeleva, M. (2023). Playing with process conditions to increase the industrial sustainability of poly (lactic acid)-based materials. Reaction Chemistry & Engineering, 8(7), 1598-1612. https://doi.org/10.1039/D2RE00577H
  • Mehmood, A., Raina, N., Phakeenuya, V., Wonganu, B., & Cheenkachorn, K. (2023). The current status and market trend of polylactic acid as biopolymer: Awareness and needs for sustainable development. Materials Today: Proceedings, 72, 3049-3055. https://doi.org/10.1016/j.matpr.2022.08.387
  • Ebrahimi, F., & Ramezani Dana, H. (2022). Poly lactic acid (PLA) polymers: From properties to biomedical applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 71(15), 1117-1130. https://doi.org/10.1080/00914037.2021.1944140
  • Ilyas, R. A., Zuhri, M. Y. M., Aisyah, H. A., Asyraf, M. R. M., Hassan, S. A., Zainudin, E. S., & Sari, N. H. (2022). Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers, 14(1), 202. https://doi.org/10.3390/polym14010202
  • Di Lorenzo, M. L., & Androsch, R. (2018). Industrial applications of poly (lactic acid). Cham: Springer. https://doi.org/10.1007/978-3-319-75459-8
  • Pérez-Fonseca, A. A., Rodrigue, D., Martín Del Campo, A. S., & Robledo-Ortíz, J. R. (2024). Polylactic acid-agave fiber biocomposites: Processing, properties, weathering performance, and biodegradation. In Polylactic Acid Composites (pp. 13-30). De Gruyter. https://doi.org/10.1515/9783111067285-002
  • Cao, D. (2024). Increasing strength and ductility of extruded polylactic acid matrix composites using short polyester and continuous carbon fibers. The International Journal of Advanced Manufacturing Technology, 1-17. https://doi.org/10.1007/s00170-023-12887-9
  • Nagarajan, V., Mohanty, A. K., & Misra, M. (2016). Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustainable Chemistry & Engineering, 4(6), 2899-2916. https://doi.org/10.1021/acssuschemeng.6b00321
  • Dong, Y., Milentis, J., & Pramanik, A. (2018). Additive manufacturing of mechanical testing samples based on virgin poly (lactic acid)(PLA) and PLA/wood fibre composites. Advances in Manufacturing, 6, 71-82. https://doi.org/10.1007/s40436-018-0211-3
  • Anderson, I. (2017). Mechanical properties of specimens 3D printed with virgin and recycled polylactic acid. 3D Printing and Additive Manufacturing, 4(2), 110-115. https://doi.org/10.1089/3dp.2016.0054
  • Vidakis, N., Petousis, M., Kourinou, M., Velidakis, E., Mountakis, N., Fischer-Griffiths, P. E., & Tzounis, L. (2021). Additive manufacturing of multifunctional polylactic acid (PLA)—Multiwalled carbon nanotubes (MWCNTs) nanocomposites. Nanocomposites, 7(1), 184-199. https://doi.org/10.1080/20550324.2021.2000231
  • Yılmaz, M., Yılmaz, N. F., Kılıç, A., & Mazı, H. (2024). Investigation of manufacturability of in-situ crosslinked polylactic acid (PLA) and peroxide composite in additive manufacturing. Journal of the Faculty of Engineering and Architecture of Gazi University, 39(2), 859-867. https://doi.org/10.17341/gazimmfd.1213974
  • Wang, X., Huang, L., Li, Y., Wang, Y., Lu, X., Wei, Z., & Liu, Y. (2024). Research progress in polylactic acid processing for 3D printing. Journal of Manufacturing Processes, 112, 161-178. https://doi.org/10.1016/j.jmapro.2024.01.038
  • González-López, M. A., González-López, J. A., Reyes-Morales, Q. L., Pereyra, I., & Mayen, J. (2024). Modifying the manufacturing process of high-graphite content polylactic acid filament for advanced energy and sensing applications in 3D printing. Polymer, 292, 126661. https://doi.org/10.1016/j.polymer.2023.126661
  • Demir, S., Yüksel, C., & Akpınar, F. (2024). Investigation of the mechanical response of hexagonal lattice cylindrical structure fabricated with polylactic acid 3D printing. Journal of Materials Engineering and Performance, 1-14. https://doi.org/10.1007/s11665-024-09155-6
  • Bayram, M., Ustaoglu, A., Kursuncu, B., Hekimoglu, G., Sari, A., Uğur, L. O., & Ozbakkaloglu, T. (2024). 3D-printed polylactic acid-microencapsulated phase change material composites for building thermal management. Renewable and Sustainable Energy Reviews, 191, 114150. https://doi.org/10.1016/j.rser.2023.114150
  • Sharma, S., Gupta, V., Mudgal, D., & Srivastava, V. (2024). Optimization of polydopamine coating process for poly lactic acid‐based 3D printed bone plates using machine learning approaches. Polymer Engineering & Science. https://doi.org/10.1002/pen.26546
  • Fahim, I. S., Abdelrahman, K., Mostafa, A., & Hazem, N. (2024). Polylactic acid-based bionanocomposites: Synthesis, properties, and applications. In Advances in Bionanocomposites (pp. 93-116). Elsevier. https://doi.org/10.1016/B978-0-323-91764-3.00014-0
  • Molinari, G., Parlanti, P., Aliotta, L., Lazzeri, A., & Gemmi, M. (2024). TEM morphological analysis of biopolymers: The case of Poly (Lactic Acid)(PLA). Materials Today Communications, 38, 107868. https://doi.org/10.1016/j.mtcomm.2023.107868
  • Tessanan, W., Phinyocheep, P., & Amornsakchai, T. (2024). Sustainable materials with improved biodegradability and toughness from blends of poly (lactic acid), pineapple stem starch and modified natural rubber. Polymers, 16(2), 232. https://doi.org/10.3390/polym16020232
  • Letcher, T., & Waytashek, M. (2014). Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer. In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). https://doi.org/10.1115/IMECE2014-39379
  • Kaygusuz, B., & Özerinç, S. (2018). 3 Boyutlu yazıcı ile üretilen PLA bazlı yapıların mekanik özelliklerinin incelenmesi. Makine Tasarım ve İmalat Dergisi, 16(1), 1-6.
  • Çiçek, Ö. Y. (2019). Eriyik yığma modelleme ile üretilen ABS ve PLA parçaların mekanik özelliklerinin değişken dolgu oranlarında karakterizasyonu ve sayısal modellemesi (Master’s thesis). İstanbul Teknik Üniversitesi/Fen Bilimleri Enstitüsü, İstanbul.
  • Mansingh, B. B., Binoj, J. S., Tan, Z. Q., Wong, W. L. E., Amornsakchai, T., Hassan, S. A., & Goh, K. L. (2023). Characterization and performance of additive manufactured novel bio-waste polylactic acid eco-friendly composites. Journal of Polymers and the Environment, 31(6), 2306-2320. https://doi.org/10.1007/s10924-023-02758-5
  • Sajna, V., Nayak, S. K., & Mohanty, S. (2016). Weathering and biodegradation study on graft copolymer compatibilized hybrid bionanocomposites of poly(lactic acid). Journal of Materials Engineering and Performance, 25(7), 2895-2906. https://doi.org/10.1007/s11665-016-2151-z
  • Arrieta, M. P., Samper, M., Aldas, M., & López, J. (2017). On the use of PLA-PHB blends for sustainable food packaging applications. Materials, 10(9), 10087. https://doi.org/10.3390/ma10091008
  • Ausejo, J. G., Rydz, J., Musioł, M., Sikorska, W., Janeczek, H., Sobota, M., Włodarczyk Szeluga, J. U., Hercog, A., & Kowalczuk, M. (2018). Three-dimensional printing of PLA and PLA/PHA dumbbell-shaped specimens of crisscross and transverse patterns as promising materials in emerging application areas: Prediction study. Polymer Degradation and Stability, 156, 100-110. https://doi.org/10.1016/j.polymdegradstab.2018.08.008
  • Ayrilmis, N. (2018). Effect of layer thickness on surface properties of 3D printed materials produced from wood flour/PLA filament. Polymer Testing, 71, 163-166. https://doi.org/10.1016/j.polymertesting.2018.09.009
  • Patan, Z. Y. (2019). Karbon fiber takviyeli ABS kompozitlerin FDM 3D yazıcı ile üretimi ve Ansys ile modellenmesi (Master’s thesis). Çanakkale Onsekiz Mart Üniversitesi/Fen Bilimleri Enstitüsü, Çanakkale.
  • Przekop, R. E., Kujawa, M., Pawlak, W., Dobrosielska, M., Sztorch, B., & Wieleba, W. (2020). Graphite modified polylactide (PLA) for 3D printed (FDM/FFF) sliding elements. Polymers, 12(6), 1250. https://doi.org/10.3390/polym12061250
  • Uzun, M., & Erdoğdu, Y. E. (2020). Eriyik yığma modellemesi ile üretimde takviyesiz ve takviyeli PLA kullanımının mekanik özelliklere etkisinin araştırılması. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(4), 2800-2808. https://doi.org/10.21597/jist.799230
  • Thakur, V., Kumar, R., Kumar, R., Singh, R., & Kumar, V. (2024). Hybrid additive manufacturing of highly sustainable polylactic acid-carbon fiber-polylactic acid sandwiched composite structures: Optimization and machine learning. Journal of Thermoplastic Composite Materials. https://doi.org/10.1177/08927057231180186
  • Rajeshkumar, G., Seshadri, S. A., Devnani, G. L., Sanjay, M. R., Siengchin, S., Maran, J. P., ... & Anuf, A. R. (2021). Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites–A comprehensive review. Journal of Cleaner Production, 310, 127483. https://doi.org/10.1016/j.jclepro.2021.127483
  • Rezvani Ghomi, E., Khosravi, F., Saedi Ardahaei, A., Dai, Y., Neisiany, R. E., Foroughi, F., ... & Ramakrishna, S. (2021). The life cycle assessment for polylactic acid (PLA) to make it a low-carbon material. Polymers, 13(11), 1854. https://doi.org/10.3390/polym13111854
  • Zhang, M., & Thomas, N. L. (2011). Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Advances in Polymer Technology, 30(2), 67-79. https://doi.org/10.1002/adv.20235
  • Kamau-Devers, K., Kortum, Z., & Miller, S. A. (2019). Hydrothermal aging of bio-based poly(lactic acid) (PLA) wood polymer composites: Studies on sorption behavior, morphology, and heat conductance. Construction and Building Materials, 214, 290-302. https://doi.org/10.1016/j.conbuildmat.2019.04.098
  • Kakanuru, P., & Pochiraju, K. (2020). Moisture ingress and degradation of additively manufactured PLA, ABS and PLA/SiC composite parts. Additive Manufacturing, 36, 101529. https://doi.org/10.1016/j.addma.2020.101529
  • Nandhini, R., Sivaprakash, B., Rajamohan, N., & Vo, D. V. N. (2023). Lignin and polylactic acid for the production of bioplastics and valuable chemicals. Environmental Chemistry Letters, 21(1), 403-427. https://doi.org/10.1007/s10311-022-01505-x
  • Siracusa, V., Karpova, S., Olkhov, A., Zhulkina, A., Kosenko, R., & Iordanskii, A. (2020). Gas transport phenomena and polymer dynamics in PHB/PLA blend films as potential packaging materials. Polymers, 12(3), 647. https://doi.org/10.3390/polym12030647
  • Johansson, M., Skrifvars, M., Kadi, N., & Dhakal, H. N. (2023). Effect of lignin acetylation on the mechanical properties of lignin-poly-lactic acid biocomposites for advanced applications. Industrial Crops and Products, 202, 117049. https://doi.org/10.1016/j.indcrop.2023.117049
  • Tripathi, N., Misra, M., & Mohanty, A. K. (2021). Durable polylactic acid (PLA)-based sustainable engineered blends and biocomposites: Recent developments, challenges, and opportunities. ACS Engineering Au, 1(1), 7-38. https://doi.org/10.1021/acsengineeringau.1c00011
  • Ferreira, E. D. S. B., Luna, C. B. B., Siqueira, D. D., dos Santos Filho, E. A., Araújo, E. M., & Wellen, R. M. R. (2021). Production of eco-sustainable materials: Compatibilizing action in poly (lactic acid)/high-density biopolyethylene bioblends. Sustainability, 13(21), 12157. https://doi.org/10.3390/su132112157
  • Harris, A. M., & Lee, E. C. (2010). Heat and humidity performance of injection molded PLA for durable applications. Journal of Applied Polymer Science, 115, 1380-1389. https://doi.org/10.1002/app.30815
  • Porfyris, A., Vasilakos, S., Zotiadis, C., Papaspyrides, C., Moser, K., Schueren, L., Buyle, G., Pavlidou, S., & Vouyiouka, S. (2018). Accelerated ageing and hydrolytic stabilization of poly(lactic acid) (PLA) under humidity and temperature conditioning. Polymer Testing, 68, 315-332. https://doi.org/10.1016/j.polymertesting.2018.04.018
  • Guo, R., Ren, Z., Bi, H., Xu, M., & Cai, L. (2019). Electrical and thermal conductivity of polylactic acid (PLA)-based bio composites by incorporation of nano-graphite fabricated with fused deposition modeling. Polymers, 11(3), 549. https://doi.org/10.3390/polym11030549
  • Alkan Goksu, Y. (2024). Enhancing the sustainability of poly (lactic acid) (PLA) through ketene-based chain extension. Journal of Polymers and the Environment, 1-14. https://doi.org/10.1007/s10924-023-03171-8
  • Ramezani Dana, H., & Ebrahimi, F. (2023). Synthesis, properties, and applications of polylactic acid‐based polymers. Polymer Engineering & Science, 63(1), 22-43. https://doi.org/10.1002/pen.26193
There are 51 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors
Journal Section Review Article
Authors

Arslan Kaptan 0000-0002-2431-9329

Fuat Kartal 0000-0002-2567-9705

Project Number KÜBAP - -1/2023-18.
Early Pub Date June 3, 2024
Publication Date June 20, 2024
Submission Date February 21, 2024
Acceptance Date May 5, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Kaptan, A., & Kartal, F. (2024). Advancements in polylactic acid research: From material properties to sustainable applications. European Mechanical Science, 8(2), 104-114. https://doi.org/10.26701/ems.1440630

Dergi TR Dizin'de Taranmaktadır.

Flag Counter