Research Article
BibTex RIS Cite

Mutual examination of corrosion and wear resistance of sandblasting and etching surface treatments applied to AISI 316L stainless steel

Year 2024, Volume: 8 Issue: 3, 160 - 166, 20.09.2024
https://doi.org/10.26701/ems.1470604

Abstract

Since AISI 316L stainless steel has excellent mechanical qualities and resistance to corrosion, it is widely used in many different industries. Surface treatments like etching and sandblasting are frequently used to improve the surface properties for certain uses. It is still difficult to comprehend how these treatments affect the material’s resistance to corrosion and wear, though. In this work, we methodically examine how sandblasting and etching affect AISI 316L stainless steel’s resistance to corrosion and wear. We assess the morphological, chemical, and performance changes brought about by these treatments using X-ray diffraction, scanning electron microscopy, microhardness testing, and tribological analysis. Our findings show that the surface morphology and chemistry are dramatically changed by both treatments, which has an impact on the corrosion and wear behavior of the material. The best wear resistance was obtained from the sandblasted sample (0.64 x10−3 mm3/Nm) and the best corrosion resistance was obtained from the untreated sample. The optimization of surface treatment techniques for stainless steel alloys in many industrial applications is facilitated by these findings.

References

  • A.S.M. International, & Narayan, R. J. (2012). Materials for medical devices. ASM International. https://dl.asminternational.org/handbooks/edited-volume/56/chapter/667361/Medical-Implant-Materials
  • Ali, S., Abdul Rani, A. M., Altaf, K., Hussain, P., Prakash, C., Hastuty, S., Rao, T. V. V. L. N., Aliyu, A. A., & Subramaniam, K. (2019). Investigation of alloy composition and sintering parameters on the corrosion resistance and microhardness of 316L stainless steel alloy. In B. Gapiński, M. Szostak, & V. Ivanov (Eds.), Advances in Manufacturing II (pp. 532–541). Springer International Publishing. https://doi.org/10.1007/978-3-030-16943-5_45
  • Ren, Z., & Ernst, F. (2020). Stress–corrosion cracking of AISI 316L stainless steel in seawater environments: Effect of surface machining. Metals, 10(1324). https://doi.org/10.3390/met10101324
  • Acar, M. T. (2023). Investigation of the effects of Sr and Mn doping on corrosion tribocorrosion and cyclic voltammetry performances of TiO2 nanotubes. European Mechanical Science, 7, 138–145. https://doi.org/10.26701/ems.1265161
  • Acar, M. T. (2023). Investigation of surface wettability, corrosion and tribocorrosion behavior of machined, etched, blasted and anodized Cp-Ti samples. MRS Communications, 13, 587–593. https://doi.org/10.1557/s43579-023-00387-6
  • Liu, J., Xue, Y., Dong, X., Fan, Y., Hao, H., & Wang, X. (2023). Review of the surface treatment process for the adhesive matrix of composite materials. International Journal of Adhesion and Adhesives, 126, 103446. https://doi.org/10.1016/j.ijadhadh.2023.103446
  • Menezes, M. R., Godoy, C., Buono, V. T. L., Schvartzman, M. M., & Wilson, J. A.-B. (2017). Effect of shot peening and treatment temperature on wear and corrosion resistance of sequentially plasma treated AISI 316L steel. Surface and Coatings Technology, 309, 651–662. https://doi.org/10.1016/j.surfcoat.2016.10.066
  • Vafadar, A., Guzzomi, F., Rassau, A., & Hayward, K. (2021). Advances in metal additive manufacturing: A review of common processes, industrial applications, and current challenges. Applied Sciences, 11(1213). https://doi.org/10.3390/app11031213
  • Ferraris, S., Vitale, A., Bertone, E., Guastella, S., Cassinelli, C., Pan, J., & Spriano, S. (2016). Multifunctional commercially pure titanium for the improvement of bone integration: Multiscale topography, wettability, corrosion resistance and biological functionalization. Materials Science and Engineering: C, 60, 384–393. https://doi.org/10.1016/j.msec.2015.11.040
  • Rakngarm, A., & Mutoh, Y. (2009). Characterization and fatigue damage of plasma sprayed HAp top coat with Ti and HAp/Ti bond coat layers on commercially pure titanium substrate. Journal of the Mechanical Behavior of Biomedical Materials, 2, 444–453. https://doi.org/10.1016/j.jmbbm.2008.12.007
  • Akpinar, I. A. (2024). The effect of chemical etching and nanostructure additive epoxy coating technique on adhesion strength in aluminum joints bonded with nanostructure additive adhesive. International Journal of Adhesion and Adhesives, 129, 103584. https://doi.org/10.1016/j.ijadhadh.2023.103584
  • Acar, M. T., Kovacı, H., & Çelik, A. (2021). Enhancement of the tribological performance and surface wettability of Ti6Al4V biomedical alloy with boric/sulfuric acid anodic film. Surface Topography: Metrology and Properties, 9(035024). https://doi.org/10.1088/2051-672x/ac011e
  • Acar, M. T. (2024). Analyzing the corrosion and tribocorrosion performances of monolayer TiO2 and bilayer TiO2-SiO2 coatings at different SBF temperatures. Physica Scripta, 99(025910). https://doi.org/10.1088/1402-4896/aa5677
  • Acar, M. T., Çomaklı, O., Yazıcı, M., Arslan, M. E., Yetim, A. F., & Çelik, A. (2024). The effect of doping different amounts of boron on the corrosion resistance and biocompatibility of TiO2 nanotubes synthesized on SLM Ti6Al4V samples. Surfaces and Interfaces, 104472. https://doi.org/10.1016/j.surfin.2023.104472
  • Çakır, M. A., & Köseoğlu, B. (2023). Investigation of the structural, tribological, and electrochemical properties of nitrided and boronized AISI 316L stainless steel. Transactions of the Indian Institute of Metals, 76, 1517–1533. https://doi.org/10.1007/s12666-023-02624-w
  • Strasser, T., Preis, V., Behr, M., & Rosentritt, M. (2018). Roughness, surface energy, and superficial damages of CAD/CAM materials after surface treatment. Clinical Oral Investigations, 22, 2787–2797. https://doi.org/10.1007/s00784-018-2364-2
  • Sun, J., Wang, W., Liu, Z., Li, B., Xing, K., & Yang, Z. (2020). Study on selective laser melting 316L stainless steel parts with superhydrophobic surface. Applied Surface Science, 533, 147445. https://doi.org/10.1016/j.apsusc.2020.147445
  • Hebbar, R. S., Isloor, A. M., & Ismail, A. F. (2017). Contact angle measurements. In Membrane Characterization 219–255. Elsevier. https://doi.org/10.1016/B978-0-444-63776-5.00012-7
  • Patankar, N. A. (2003). On the modeling of hydrophobic contact angles on rough surfaces. Langmuir, 19, 1249–1253. https://doi.org/10.1021/la026612+
  • Huang, Y., Sarkar, D. K., & Chen, X. G. (2015). Superhydrophobic aluminum alloy surfaces prepared by chemical etching process and their corrosion resistance properties. Applied Surface Science, 356, 1012–1024. https://doi.org/10.1016/j.apsusc.2015.08.168
  • Meiron, T. S., Marmur, A., & Saguy, I. S. (2004). Contact angle measurement on rough surfaces. Journal of Colloid and Interface Science, 274, 637–644. https://doi.org/10.1016/j.jcis.2004.03.026
  • Fazel, M., Salimijazi, H. R., & Golozar, M. A. (2015). A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process. Applied Surface Science, 324, 751–756. https://doi.org/10.1016/j.apsusc.2014.11.118
  • Zou, J. X., Zhang, K. M., Hao, S. Z., Dong, C., & Grosdidier, T. (2010). Mechanisms of hardening, wear and corrosion improvement of 316 L stainless steel by low energy high current pulsed electron beam surface treatment. Thin Solid Films, 519, 1404–1415. https://doi.org/10.1016/j.tsf.2010.07.031
  • Noor, E. A., & Al-Moubaraki, A. H. (2008). Corrosion behavior of mild steel in hydrochloric acid solutions. International Journal of Electrochemical Science, 3, 806–818.
  • Mu, J., Sun, T., Leung, C. L. A., Oliveira, J. P., Wu, Y., Wang, H., & Wang, H. (2023). Application of electrochemical polishing in surface treatment of additively manufactured structures: A review. Progress in Materials Science, 101109. https://doi.org/10.1016/j.pmatsci.2023.101109
  • Burwell, J. T. Jr. (1957). Survey of possible wear mechanisms. Wear, 1, 119–141. https://doi.org/10.1016/0043-1648(57)90046-8
  • Tkadletz, M., Schalk, N., Daniel, R., Keckes, J., Czettl, C., & Mitterer, C. (2016). Advanced characterization methods for wear resistant hard coatings: A review on recent progress. Surface and Coatings Technology, 285, 31–46. https://doi.org/10.1016/j.surfcoat.2015.11.004
Year 2024, Volume: 8 Issue: 3, 160 - 166, 20.09.2024
https://doi.org/10.26701/ems.1470604

Abstract

References

  • A.S.M. International, & Narayan, R. J. (2012). Materials for medical devices. ASM International. https://dl.asminternational.org/handbooks/edited-volume/56/chapter/667361/Medical-Implant-Materials
  • Ali, S., Abdul Rani, A. M., Altaf, K., Hussain, P., Prakash, C., Hastuty, S., Rao, T. V. V. L. N., Aliyu, A. A., & Subramaniam, K. (2019). Investigation of alloy composition and sintering parameters on the corrosion resistance and microhardness of 316L stainless steel alloy. In B. Gapiński, M. Szostak, & V. Ivanov (Eds.), Advances in Manufacturing II (pp. 532–541). Springer International Publishing. https://doi.org/10.1007/978-3-030-16943-5_45
  • Ren, Z., & Ernst, F. (2020). Stress–corrosion cracking of AISI 316L stainless steel in seawater environments: Effect of surface machining. Metals, 10(1324). https://doi.org/10.3390/met10101324
  • Acar, M. T. (2023). Investigation of the effects of Sr and Mn doping on corrosion tribocorrosion and cyclic voltammetry performances of TiO2 nanotubes. European Mechanical Science, 7, 138–145. https://doi.org/10.26701/ems.1265161
  • Acar, M. T. (2023). Investigation of surface wettability, corrosion and tribocorrosion behavior of machined, etched, blasted and anodized Cp-Ti samples. MRS Communications, 13, 587–593. https://doi.org/10.1557/s43579-023-00387-6
  • Liu, J., Xue, Y., Dong, X., Fan, Y., Hao, H., & Wang, X. (2023). Review of the surface treatment process for the adhesive matrix of composite materials. International Journal of Adhesion and Adhesives, 126, 103446. https://doi.org/10.1016/j.ijadhadh.2023.103446
  • Menezes, M. R., Godoy, C., Buono, V. T. L., Schvartzman, M. M., & Wilson, J. A.-B. (2017). Effect of shot peening and treatment temperature on wear and corrosion resistance of sequentially plasma treated AISI 316L steel. Surface and Coatings Technology, 309, 651–662. https://doi.org/10.1016/j.surfcoat.2016.10.066
  • Vafadar, A., Guzzomi, F., Rassau, A., & Hayward, K. (2021). Advances in metal additive manufacturing: A review of common processes, industrial applications, and current challenges. Applied Sciences, 11(1213). https://doi.org/10.3390/app11031213
  • Ferraris, S., Vitale, A., Bertone, E., Guastella, S., Cassinelli, C., Pan, J., & Spriano, S. (2016). Multifunctional commercially pure titanium for the improvement of bone integration: Multiscale topography, wettability, corrosion resistance and biological functionalization. Materials Science and Engineering: C, 60, 384–393. https://doi.org/10.1016/j.msec.2015.11.040
  • Rakngarm, A., & Mutoh, Y. (2009). Characterization and fatigue damage of plasma sprayed HAp top coat with Ti and HAp/Ti bond coat layers on commercially pure titanium substrate. Journal of the Mechanical Behavior of Biomedical Materials, 2, 444–453. https://doi.org/10.1016/j.jmbbm.2008.12.007
  • Akpinar, I. A. (2024). The effect of chemical etching and nanostructure additive epoxy coating technique on adhesion strength in aluminum joints bonded with nanostructure additive adhesive. International Journal of Adhesion and Adhesives, 129, 103584. https://doi.org/10.1016/j.ijadhadh.2023.103584
  • Acar, M. T., Kovacı, H., & Çelik, A. (2021). Enhancement of the tribological performance and surface wettability of Ti6Al4V biomedical alloy with boric/sulfuric acid anodic film. Surface Topography: Metrology and Properties, 9(035024). https://doi.org/10.1088/2051-672x/ac011e
  • Acar, M. T. (2024). Analyzing the corrosion and tribocorrosion performances of monolayer TiO2 and bilayer TiO2-SiO2 coatings at different SBF temperatures. Physica Scripta, 99(025910). https://doi.org/10.1088/1402-4896/aa5677
  • Acar, M. T., Çomaklı, O., Yazıcı, M., Arslan, M. E., Yetim, A. F., & Çelik, A. (2024). The effect of doping different amounts of boron on the corrosion resistance and biocompatibility of TiO2 nanotubes synthesized on SLM Ti6Al4V samples. Surfaces and Interfaces, 104472. https://doi.org/10.1016/j.surfin.2023.104472
  • Çakır, M. A., & Köseoğlu, B. (2023). Investigation of the structural, tribological, and electrochemical properties of nitrided and boronized AISI 316L stainless steel. Transactions of the Indian Institute of Metals, 76, 1517–1533. https://doi.org/10.1007/s12666-023-02624-w
  • Strasser, T., Preis, V., Behr, M., & Rosentritt, M. (2018). Roughness, surface energy, and superficial damages of CAD/CAM materials after surface treatment. Clinical Oral Investigations, 22, 2787–2797. https://doi.org/10.1007/s00784-018-2364-2
  • Sun, J., Wang, W., Liu, Z., Li, B., Xing, K., & Yang, Z. (2020). Study on selective laser melting 316L stainless steel parts with superhydrophobic surface. Applied Surface Science, 533, 147445. https://doi.org/10.1016/j.apsusc.2020.147445
  • Hebbar, R. S., Isloor, A. M., & Ismail, A. F. (2017). Contact angle measurements. In Membrane Characterization 219–255. Elsevier. https://doi.org/10.1016/B978-0-444-63776-5.00012-7
  • Patankar, N. A. (2003). On the modeling of hydrophobic contact angles on rough surfaces. Langmuir, 19, 1249–1253. https://doi.org/10.1021/la026612+
  • Huang, Y., Sarkar, D. K., & Chen, X. G. (2015). Superhydrophobic aluminum alloy surfaces prepared by chemical etching process and their corrosion resistance properties. Applied Surface Science, 356, 1012–1024. https://doi.org/10.1016/j.apsusc.2015.08.168
  • Meiron, T. S., Marmur, A., & Saguy, I. S. (2004). Contact angle measurement on rough surfaces. Journal of Colloid and Interface Science, 274, 637–644. https://doi.org/10.1016/j.jcis.2004.03.026
  • Fazel, M., Salimijazi, H. R., & Golozar, M. A. (2015). A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process. Applied Surface Science, 324, 751–756. https://doi.org/10.1016/j.apsusc.2014.11.118
  • Zou, J. X., Zhang, K. M., Hao, S. Z., Dong, C., & Grosdidier, T. (2010). Mechanisms of hardening, wear and corrosion improvement of 316 L stainless steel by low energy high current pulsed electron beam surface treatment. Thin Solid Films, 519, 1404–1415. https://doi.org/10.1016/j.tsf.2010.07.031
  • Noor, E. A., & Al-Moubaraki, A. H. (2008). Corrosion behavior of mild steel in hydrochloric acid solutions. International Journal of Electrochemical Science, 3, 806–818.
  • Mu, J., Sun, T., Leung, C. L. A., Oliveira, J. P., Wu, Y., Wang, H., & Wang, H. (2023). Application of electrochemical polishing in surface treatment of additively manufactured structures: A review. Progress in Materials Science, 101109. https://doi.org/10.1016/j.pmatsci.2023.101109
  • Burwell, J. T. Jr. (1957). Survey of possible wear mechanisms. Wear, 1, 119–141. https://doi.org/10.1016/0043-1648(57)90046-8
  • Tkadletz, M., Schalk, N., Daniel, R., Keckes, J., Czettl, C., & Mitterer, C. (2016). Advanced characterization methods for wear resistant hard coatings: A review on recent progress. Surface and Coatings Technology, 285, 31–46. https://doi.org/10.1016/j.surfcoat.2015.11.004
There are 27 citations in total.

Details

Primary Language English
Subjects Biomaterials in Biomedical Engineering
Journal Section Research Article
Authors

Muhammet Taha Acar 0000-0002-8367-9623

Early Pub Date August 9, 2024
Publication Date September 20, 2024
Submission Date April 18, 2024
Acceptance Date July 12, 2024
Published in Issue Year 2024 Volume: 8 Issue: 3

Cite

APA Acar, M. T. (2024). Mutual examination of corrosion and wear resistance of sandblasting and etching surface treatments applied to AISI 316L stainless steel. European Mechanical Science, 8(3), 160-166. https://doi.org/10.26701/ems.1470604

Dergi TR Dizin'de Taranmaktadır.

Flag Counter