Research Article
BibTex RIS Cite

The synthesis and characterization of alkaline niobate-based ceramic composites containing L-lysine Hydrochloride

Year 2024, Volume: 8 Issue: 3, 153 - 159, 20.09.2024
https://doi.org/10.26701/ems.1497079

Abstract

Some lead-free piezoelectric ceramics are known to have high dielectric and piezoelectric properties but are limited by their brittle nature. A few amino acids have recently been reported to exhibit rather low dielectric and piezoelectric properties but have the advantage of being biocompatible and flexible. It would therefore be interesting to form a composite that will combine the inherent advantage of high dielectric properties from the ceramics and flexibility from the biomolecule. In this research, the properties of lead-free (K0.45Na0.51Li0.04)(Nb0.85Ta0.1Sb0.05)O3 (KNNLST) ceramics and L-lysine hydrochloride (L-LHCl) have been combined to produce dielectric composites. The samples were produced by mixing the constituents from 0 wt.% to 100 wt.%, pelletising and heat-treating them. Bulk density, X-ray diffraction, scanning electron microscopy, and dielectric characterisation were techniques used to determine the density, phases, morphology, and dielectric properties of the produced composites. The results show an increasing bulk density value from 1.2 g/cm3 for L-LHCl to 4.67 g/cm3 for the KNNLST ceramics. The morphology of the composite shows very tiny grains when small amounts of the ceramics were introduced. The L-LHCl transforms from an amorphous phase to a crystalline phase having the orthorhombic-tetragonal structure with the introduction of the KNNLST ceramics. The dielectric constant values increased with increasing KNNLST ceramics content from 10 @1 kHz to 200 for the composite with 80 wt%. KNNLST content. The dielectric loss values decreased for L-LHCl from 0.9 @1 kHz to 0.2 @1kHz. The electrical conductivity values increased with increasing KNNLST ceramics content. The results show that the composites produced from these constituents may be suitable for dielectric applications.

References

  • Gerbitz, V.-D. (1980). Gerbitz: Pankreatische B-Zellen-Peptide Pankreatische B-Zellen-Peptide: Kinetik und Konzentration von Proinsulin, Insulin und C-Peptid in Plasma und Urin, Probleme der Meßmethoden, klinische Aussage und Literaturübersicht. Journal of Clinical Chemistry and Clinical Biochemistry, 18, 313-320.
  • Shmueli, U., & Traub, W. (1965). An X-ray diffraction study of poly-L-lysine hydrochloride. Journal of Molecular Biology, 12(1), 205–214. https://doi.org/10.1016/S0022-2836(65)80294-7
  • Williams, P. A., Hughes, C. E., & Harris, K. D. M. (2015). L-lysine: Exploiting powder x-ray diffraction to complete the set of crystal structures of the 20 directly encoded proteinogenic amino acids. Angewandte Chemie International Edition, 54(13), 3973–3977. https://doi.org/10.1002/anie.201411520
  • Ramesh Babu, R., Vijayan, N., Gopalakrishnan, R., & Ramasamy, P. (2006). Growth and characterization of L-lysine monohydrochloride dihydrate (L-LMHCl) single crystal. Crystal Research and Technology, 41(4), 405–410. https://doi.org/10.1002/crat.200510594
  • Ramesh Babu, R., Sethuraman, K., Vijayan, N., Bhagavannarayana, G., Gopalakrishnan, R., & Ramasamy, P. (2006). Etching and dielectric studies on L-lysine monohydrochloride dihydrate single crystal. Crystal Research and Technology, 41(9), 906–910. https://doi.org/10.1002/crat.200510693
  • Goloshchapov, D., Kashkarov, V., Nikitkov, K., & Seredin, P. (2021). Investigation of the effect of nanocrystalline calcium carbonate-substituted hydroxyapatite and L-lysine and L-arginine surface interactions on the molecular properties of dental biomimetic composites. Biomimetics, 6(4). https://doi.org/10.3390/biomimetics6040070
  • Goloshchapov, D., Kashkarov, V., Nikitkov, K., Bartenev, V., Ippolitov, I., Ippolitov, Y., & Seredin, P. (2020). Study of the impact of amino acids hydrochloride forms on the formation of biomimetic composites in the presence of nanocrystalline hydroxyapatite. Journal of Physics: Conference Series, 1697(1). https://doi.org/10.1088/1742-6596/1697/1/012040
  • Kanagathara, N., & Anbalagan, G. (2012). Growth, optical and dielectric studies on pure and L-lysine doped KDP crystals. International Journal of Optics, 2012. https://doi.org/10.1155/2012/826763
  • Mirtič, A., & Grdadolnik, J. (2013). The structure of poly-l-lysine in different solvents. Biophysical Chemistry, 175–176, 47–53. https://doi.org/10.1016/J.BPC.2013.02.004
  • Guerin, S., Stapleton, A., Chovan, D., Mouras, R., Gleeson, M., McKeown, C., Noor, M. R., Silien, C., Rhen, F. M. F., Kholkin, A. L., Liu, N., Soulimane, T., Tofail, S. A. M., & Thompson, D. (2018). Control of piezoelectricity in amino acids by supramolecular packing. Nature Materials, 17(2), 180–186. https://doi.org/10.1038/NMAT5045
  • Guerin, S., Tofail, S. A. M., & Thompson, D. (2019). Organic piezoelectric materials: milestones and potential. NPG Asia Materials, 11(1). https://doi.org/10.1038/s41427-019-0110-5
  • Mgbemere, H. E., Hinterstein, M., & Schneider, G. A. (2011). Electrical and structural characterization of (K x Na 1-x )NbO 3 ceramics modified with Li and Ta. Journal of Applied Crystallography, 44(5), 1080–1089. https://doi.org/10.1107/S0021889811027701
  • Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., & Nakamura, M. (2004). Lead-free piezoceramics. Nature, 432, 84–87. https://doi.org/10.1038/nature03028
  • ChemicalBook. (n.d.). Retrieved March 16, 2024, from https://www.chemicalbook.com/
  • Koshti, B., Kshtriya, V., Singh, R., Walia, S., Bhatia, D., Joshi, K. B., & Gour, N. (2021). Unusual aggregates formed by the self-assembly of proline, hydroxyproline, and lysine. ACS Chemical Neuroscience, 12(17), 3237–3249. https://doi.org/10.1021/acschemneuro.1c00427
  • Padden Jr., F. J., Keith, H. D., & Giannoni, G. (1969). Single crystals of poly-L-lysine. Journal of Polymer Science, Part A-2: Polymer Physics, 7(10), 1675–1682.
  • Durmus, Z., Kavas, H., Toprak, M. S., Baykal, A., Altinçekiç, T. G., Aslan, A., Bozkurt, A., & Coşgun, S. (2009). L-lysine coated iron oxide nanoparticles: Synthesis, structural and conductivity characterization. Journal of Alloys and Compounds, 484(1–2), 371–376. https://doi.org/10.1016/j.jallcom.2009.04.103
Year 2024, Volume: 8 Issue: 3, 153 - 159, 20.09.2024
https://doi.org/10.26701/ems.1497079

Abstract

References

  • Gerbitz, V.-D. (1980). Gerbitz: Pankreatische B-Zellen-Peptide Pankreatische B-Zellen-Peptide: Kinetik und Konzentration von Proinsulin, Insulin und C-Peptid in Plasma und Urin, Probleme der Meßmethoden, klinische Aussage und Literaturübersicht. Journal of Clinical Chemistry and Clinical Biochemistry, 18, 313-320.
  • Shmueli, U., & Traub, W. (1965). An X-ray diffraction study of poly-L-lysine hydrochloride. Journal of Molecular Biology, 12(1), 205–214. https://doi.org/10.1016/S0022-2836(65)80294-7
  • Williams, P. A., Hughes, C. E., & Harris, K. D. M. (2015). L-lysine: Exploiting powder x-ray diffraction to complete the set of crystal structures of the 20 directly encoded proteinogenic amino acids. Angewandte Chemie International Edition, 54(13), 3973–3977. https://doi.org/10.1002/anie.201411520
  • Ramesh Babu, R., Vijayan, N., Gopalakrishnan, R., & Ramasamy, P. (2006). Growth and characterization of L-lysine monohydrochloride dihydrate (L-LMHCl) single crystal. Crystal Research and Technology, 41(4), 405–410. https://doi.org/10.1002/crat.200510594
  • Ramesh Babu, R., Sethuraman, K., Vijayan, N., Bhagavannarayana, G., Gopalakrishnan, R., & Ramasamy, P. (2006). Etching and dielectric studies on L-lysine monohydrochloride dihydrate single crystal. Crystal Research and Technology, 41(9), 906–910. https://doi.org/10.1002/crat.200510693
  • Goloshchapov, D., Kashkarov, V., Nikitkov, K., & Seredin, P. (2021). Investigation of the effect of nanocrystalline calcium carbonate-substituted hydroxyapatite and L-lysine and L-arginine surface interactions on the molecular properties of dental biomimetic composites. Biomimetics, 6(4). https://doi.org/10.3390/biomimetics6040070
  • Goloshchapov, D., Kashkarov, V., Nikitkov, K., Bartenev, V., Ippolitov, I., Ippolitov, Y., & Seredin, P. (2020). Study of the impact of amino acids hydrochloride forms on the formation of biomimetic composites in the presence of nanocrystalline hydroxyapatite. Journal of Physics: Conference Series, 1697(1). https://doi.org/10.1088/1742-6596/1697/1/012040
  • Kanagathara, N., & Anbalagan, G. (2012). Growth, optical and dielectric studies on pure and L-lysine doped KDP crystals. International Journal of Optics, 2012. https://doi.org/10.1155/2012/826763
  • Mirtič, A., & Grdadolnik, J. (2013). The structure of poly-l-lysine in different solvents. Biophysical Chemistry, 175–176, 47–53. https://doi.org/10.1016/J.BPC.2013.02.004
  • Guerin, S., Stapleton, A., Chovan, D., Mouras, R., Gleeson, M., McKeown, C., Noor, M. R., Silien, C., Rhen, F. M. F., Kholkin, A. L., Liu, N., Soulimane, T., Tofail, S. A. M., & Thompson, D. (2018). Control of piezoelectricity in amino acids by supramolecular packing. Nature Materials, 17(2), 180–186. https://doi.org/10.1038/NMAT5045
  • Guerin, S., Tofail, S. A. M., & Thompson, D. (2019). Organic piezoelectric materials: milestones and potential. NPG Asia Materials, 11(1). https://doi.org/10.1038/s41427-019-0110-5
  • Mgbemere, H. E., Hinterstein, M., & Schneider, G. A. (2011). Electrical and structural characterization of (K x Na 1-x )NbO 3 ceramics modified with Li and Ta. Journal of Applied Crystallography, 44(5), 1080–1089. https://doi.org/10.1107/S0021889811027701
  • Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., & Nakamura, M. (2004). Lead-free piezoceramics. Nature, 432, 84–87. https://doi.org/10.1038/nature03028
  • ChemicalBook. (n.d.). Retrieved March 16, 2024, from https://www.chemicalbook.com/
  • Koshti, B., Kshtriya, V., Singh, R., Walia, S., Bhatia, D., Joshi, K. B., & Gour, N. (2021). Unusual aggregates formed by the self-assembly of proline, hydroxyproline, and lysine. ACS Chemical Neuroscience, 12(17), 3237–3249. https://doi.org/10.1021/acschemneuro.1c00427
  • Padden Jr., F. J., Keith, H. D., & Giannoni, G. (1969). Single crystals of poly-L-lysine. Journal of Polymer Science, Part A-2: Polymer Physics, 7(10), 1675–1682.
  • Durmus, Z., Kavas, H., Toprak, M. S., Baykal, A., Altinçekiç, T. G., Aslan, A., Bozkurt, A., & Coşgun, S. (2009). L-lysine coated iron oxide nanoparticles: Synthesis, structural and conductivity characterization. Journal of Alloys and Compounds, 484(1–2), 371–376. https://doi.org/10.1016/j.jallcom.2009.04.103
There are 17 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors, Microelectromechanical Systems (Mems)
Journal Section Research Article
Authors

Henry Mgbemere 0000-0003-3887-7628

Viktoriya Semeykina This is me 0000-0001-8175-3351

Chiedozie Oluigbo 0000-0002-8900-2883

Early Pub Date July 27, 2024
Publication Date September 20, 2024
Submission Date June 6, 2024
Acceptance Date July 11, 2024
Published in Issue Year 2024 Volume: 8 Issue: 3

Cite

APA Mgbemere, H., Semeykina, V., & Oluigbo, C. (2024). The synthesis and characterization of alkaline niobate-based ceramic composites containing L-lysine Hydrochloride. European Mechanical Science, 8(3), 153-159. https://doi.org/10.26701/ems.1497079

Dergi TR Dizin'de Taranmaktadır.

Flag Counter