Research Article
BibTex RIS Cite

Erosive-abrasive wear modeling of a water jet pump in a slurry medium

Year 2024, Volume: 8 Issue: 4, 257 - 266, 20.12.2024
https://doi.org/10.26701/ems.1504033

Abstract

In the study, water jet pump transfers the slurry in the well through pipe system to centrifugal pump. Sand-water mixture causes amount of material loss in the water jet pump structure computed by a software program. The purpose of the study is to determine the most critical part in the water jet pump. The wear amount is affected by many parameters such as sand particle diameter, mass flow rate of abrasive and inlet velocity. So, it is investigated that the wear amount on the jet pump is changed according to sand percentage in the well water, inlet velocity and erodent diameter. Mass flow rates of sand have a value of 0.097 kg/s for w.p. % 5, 0.194 kg/s for w.p. % 10, 0.291 kg/s for w.p. % 15 at an inlet velocity of 3.98 m/s. The maximum erosion wear rate is raised from 2.26x10-4 kg/(s m2) to 6.84x10-8 kg/s2m2 for inlet velocities of 1.99 m/s, 3.98 and 7.96 m/s, respectively for the case of weight percentages of %15 in Finnie erosion wear model. Finnie, Mclaury, Generic and Oka erosion models have been compared. It is found that Mclaury’s erosion model demonstrates the highest erosion value of 1.38x10-3 kg/(s m2) for w.p. % 15 at 3.98 m/s inlet velocity for the erodent diameter of 0.0005m in all. It is claimed that erosive wear has been concentrated on the nozzle of the water jet pump. The wear rate can be predicted as straightforwardly for different conditions.

References

  • Islam, M. A., & Farhat, Z. N. (2014). Effect of impact angle and velocity on erosion of API X42 pipeline steel under high abrasive feed rate. Wear, 311, 180–190. https://doi.org/10.1016/j.wear.2014.01.005
  • Jerman, M., Zeleňák, M., Lebar, A., Foldyna, V., Foldyna, J., & Valentinčič, J. (2021). Observation of cryogenically cooled ice particles inside the high-speed water jet. Journal of Material Processing Technology, 289, 116947. https://doi.org/10.1016/j.jmatprotec.2020.116947
  • Kosa, E., & Göksenli, A. (2015). Effect of impact angle on erosive abrasive wear of ductile and brittle materials. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 9, 536-540. http://scholar.waset.org/1307-6892/10002428
  • Sheng, M., Huang, Z. W., Tian, S. C., Zhang, Y., Gao, S-W., & Jia, J-P. (2020). CFD analysis and field observation of tool erosion caused by abrasive waterjet fracturing. Petroleum Science, 17(3), 701-711. https://doi.org/10.1007/s12182-020-00425-1
  • Zhang, L., Ji, R., Fu, Y., Qi, H., Kong, F., Li, H., & Tangwarodomnukun, V. (2020). Investigation on particle motions and resultant impact erosion on quartz crystals by the micro-particle laden waterjet and airjet. Powder Technology, 360, 452-461. https://doi.org/10.1016/j.powtec.2019.10.032
  • Zhang, R., Liu, H., & Zhao, C. A. (2013). Probability model for solid particle erosion in a straight pipe. Wear, 308, 1–9. https://doi.org/10.1016/j.wear.2013.09.011
  • Zhao, Y. L., Tang, C. Y., Yao, J., Zeng, Z.-H., & Dong, S.-G. (2020). Investigation of erosion behavior of 304 stainless steel under solid–liquid jet flow impinging at 30°. Petroleum Science, 17, 1135–1150. https://doi.org/10.1007/s12182-020-00473-7
  • Guo, B., Li, Y. H., Xiao, Y. X., Ahn, S. H., Wu, X., Zeng, C. J., & Wang, Z. W. (2021). Numerical analysis of sand erosion for a Pelton turbine injector at high concentration. Earth and Environmental Science, 627, 012022.
  • Safaei, M. R., Mahian, O., Garoosi, F., Hooman, K., Karimipour, A., Kazi, S. N., & Gharehkhani, S. (2014). Investigation of micro- and nanosized particle erosion in a 90° pipe bend using a two-phase discrete phase model. The Scientific World Journal. https://doi.org/10.1155/2014/740578
  • Vieira, R. E., Mansouri, A., McLaury, B. S., & Shirazi, S. A. (2016). Experimental and computational study of erosion in elbows due to sand particles in air flow. Powder Technology, 288, 339–353. https://doi.org/10.1016/j.powtec.2015.11.028
  • Al-Baghdadi, M. A., Resan, K. K., & Al-Wail, M. (2017). CFD investigation of the erosion severity in 3D flow elbow during crude oil contaminated sand transportation. Engineering and Technology Journal, 35, 930–935. https://doi.org/10.30684/etj.35.9A.10
  • Sanni, S. E., Olawale, A. S., & Adefila, S. S. (2015). Modeling of sand and crude oil flow in horizontal pipes during crude oil transportation. Journal of Engineering, 1–7. https://doi.org/10.1155/2015/457860
  • Parsi, M., Najmi, K., & Najafifard, F. A. (2014). Comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications. Journal of Natural Gas Science and Engineering, 21, 850–873. https://doi.org/10.1016/j.jngse.2014.10.001
  • El-Sawaf, I. A., Halawa, M. A., Younes, M. A., & Teaima, I. R. (2011). Study of the different parameters that influence on the performance of water jet pump. Fifteenth International Water Technology Conference, Egypt.
  • Song, X. G., Park, J. H., Kim, S. G., & Park, Y. C. (2013). Performance comparison and erosion prediction of jet pumps by using a numerical method. Mathematical and Computer Modelling, 57, 245–253. https://doi.org/10.1016/j.mcm.2011.06.040
  • Jafari, A., & Abbasi, H. R. (2020). Investigation of parameters influencing erosive wear using DEM. Friction, 8(1), 136–150. https://doi.org/10.1007/s40544-018-0252-4
  • Murugan, K., & Karthikeyan, S. (2018). CFD modelling, analysis and validation of slurry erosion setup with naval brass. JAC: A Journal of Composition Theory, 11(10), 63-72.
  • Finn, J. R., & Doğan, Ö. N. (2019). Analyzing the potential for erosion in a supercritical CO2 turbine nozzle with large eddy simulation. Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers Digital Collection. https://doi.org/10.1115/GT2019-91791
  • Castorrini, A., Corsini, A., Rispoli, F., Venturini, P., Takizawa, K., & Tezduyar, T. E. (2019). Computational analysis of performance deterioration of a wind turbine blade strip subjected to environmental erosion. Computational Mechanics, 64(4), 1133-1153. https://doi.org/10.1007/s00466-019-01697-0
  • Qian, Z., Zhao, Z., Guo, Z., Thapa, B. S., & Thapa, B. (2020). Erosion wear on runner of Francis turbine in Jhimruk Hydroelectric Center. Journal of Fluids Engineering, 142(9). https://doi.org/10.1115/1.4047230
  • Pandhare, S. R., & Pitale, A. K. (2017). Study the performance of water jet pump by changing the angle of mixing nozzle. International Journal of Scientific Research in Science and Technology, 3(3), 538.
  • Pitale, A. K., & Pandhare, S. R. (2017). Experimental investigation of jet pump at different nozzle-to-throat spacing to nozzle diameter ratio (X). International Journal of Scientific Research in Science and Technology, 3(4), 168-171.
  • Sheha, A. A. A., Nasr, M., Hosien, M. A., & Wahba, E. (2018). Computational and experimental study on the water-jet pump performance. Journal of Applied Fluid Mechanics, 11(4), 1013-1020. https://doi.org/10.29252/jafm.11.04.28407
  • Sakuragi, S., & Zhao, S. (2018). Operating characteristics of multi-injection type underwater jet pump. American Journal of Mechanics and Applications, 6(3), 68-77.
  • Yam, K. S., Roy, S., Lee, V. C. C., & Law, M. C. (2020). Numerical analysis of erosion pattern on pipe elbow bend with swirling flows. 2nd International Conference on Materials Technology and Energy, IOP Conference Series: Materials Science and Engineering, 943, 012037. https://doi.org/10.1088/1757-899X/943/1/012037
  • Banakermani, M. R., Naderan, H., & Saffar-Avval, M. (2018). An investigation of erosion prediction for 15° to 90° elbows by numerical simulation of gas-solid flow. Powder Technology, 334, 9–26. https://doi.org/10.1016/j.powtec.2018.04.033
  • Kosinska, A., Balakin, B. V., & Kosinski, P. (2020). Theoretical analysis of erosion in elbows due to flows with nano- and micro-size particles. Powder Technology, 364, 484–493. https://doi.org/10.1016/j.powtec.2020.02.002
  • Doroshenko, Y., Zapukhliak, V., Grudz, Y., Poberezhny, L., Hrytsanchuk, A., & Popovych, P. (2020). Numerical simulation of the stress state of an erosion-worn tee of the main gas pipeline. Archives of Material Science and Engineering, 101, 63-78. https://doi.org/10.5604/01.3001.0014.1192
  • Bai, X., Yao, Y., Han, Z., Zhang, J., & Zhang, S. (2020). Study of solid particle erosion on helicopter rotor blades surfaces. Applied Sciences, 10(3), 977. https://doi.org/10.3390/app10030977
  • Yan, H., Li, J., Cai, C., & Ren, Y. (2020). Numerical investigation of erosion wear in the hydraulic amplifier of the deflector jet servo valve. Applied Sciences, 10(4), 1299. https://doi.org/10.3390/app10041299
  • Yanan, G., & Tingzhou, N. (2020). Numerical simulation and experiment analysis on erosion law of fractured elbow pipe. Academic Journal of Manufacturing Engineering, 18(2), 109-115.
  • Kannojiya, V., & Kumar, S. (2020). Assessment of optimum slurry pipe design for minimum erosion. Scientia Iranica, 27(5), 2409-2418. https://doi.org/10.24200/SCI.2019.52073.2519
  • Kumar, K., Kumar, S., Singh, G., Singh, J. P., & Singh, J. (2017). Erosion wear investigation of HVOF sprayed WC-10Co4Cr coating on slurry pipeline materials. Coatings, 7(4), 54. https://doi.org/10.3390/coatings7040054
  • Farokhipour, A., Mansoori, Z., Saffar-Avval, M., & Ahmadi, G. (2018). Numerical modeling of sand particle erosion at return bends in gas-particle two-phase flow. Transactions B: Mechanical Engineering, Scientia Iranica B, 25(6), 3231-3242. https://doi.org/10.24200/SCI.2018.50801.1871
  • Pang, A. L. J., Skote, M., & Lim, S. Y. (2016). Modelling high Re flow around a 2D cylindrical bluff body using the k-ω (SST) turbulence model. Progress in Computational Fluid Dynamics, An International Journal, 16(1), 48-57. https://doi.org/10.1504/PCFD.2016.074225
  • Al-Baghdadi, M. A. R. S. (2015). Applications of computational fluid dynamics and finite element methods in engineering education (Vol. 1). International Energy and Environment Foundation.
  • Finnie, I. (1960). Erosion of surfaces by solid particles. Wear, 3(2), 87–103. https://doi.org/10.1016/0043-1648(60)90055-7
  • McLaury, B. S., Shirazi, S. A., Shadley, J. R., & Rybicki, E. F. (1996). Modelling erosion in chokes. Proceedings of the ASME Fluids Engineering Summer Meeting, San Diego, California.
  • Oka, Y. I., Okamura, K., & Yoshida, T. (2005). Practical estimation of erosion damage caused by solid particle impact. Part 1: Effects of impact parameters on a predictive equation. Wear, 259, 95–101. https://doi.org/10.1016/j.wear.2005.01.039
  • Oka, Y. I., & Yoshida, T. (2005). Practical estimation of erosion damage caused by solid particle impact. Part 2: Mechanical properties of materials directly associated with erosion damage. Wear, 259, 102–109. https://doi.org/10.1016/j.wear.2005.01.040
  • Hamed, A., & Tabakoff, W. (2006). Erosion and deposition in turbomachinery. Journal of Propulsion and Power, 22(2), 350-360. https://doi.org/10.2514/1.18462
Year 2024, Volume: 8 Issue: 4, 257 - 266, 20.12.2024
https://doi.org/10.26701/ems.1504033

Abstract

References

  • Islam, M. A., & Farhat, Z. N. (2014). Effect of impact angle and velocity on erosion of API X42 pipeline steel under high abrasive feed rate. Wear, 311, 180–190. https://doi.org/10.1016/j.wear.2014.01.005
  • Jerman, M., Zeleňák, M., Lebar, A., Foldyna, V., Foldyna, J., & Valentinčič, J. (2021). Observation of cryogenically cooled ice particles inside the high-speed water jet. Journal of Material Processing Technology, 289, 116947. https://doi.org/10.1016/j.jmatprotec.2020.116947
  • Kosa, E., & Göksenli, A. (2015). Effect of impact angle on erosive abrasive wear of ductile and brittle materials. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 9, 536-540. http://scholar.waset.org/1307-6892/10002428
  • Sheng, M., Huang, Z. W., Tian, S. C., Zhang, Y., Gao, S-W., & Jia, J-P. (2020). CFD analysis and field observation of tool erosion caused by abrasive waterjet fracturing. Petroleum Science, 17(3), 701-711. https://doi.org/10.1007/s12182-020-00425-1
  • Zhang, L., Ji, R., Fu, Y., Qi, H., Kong, F., Li, H., & Tangwarodomnukun, V. (2020). Investigation on particle motions and resultant impact erosion on quartz crystals by the micro-particle laden waterjet and airjet. Powder Technology, 360, 452-461. https://doi.org/10.1016/j.powtec.2019.10.032
  • Zhang, R., Liu, H., & Zhao, C. A. (2013). Probability model for solid particle erosion in a straight pipe. Wear, 308, 1–9. https://doi.org/10.1016/j.wear.2013.09.011
  • Zhao, Y. L., Tang, C. Y., Yao, J., Zeng, Z.-H., & Dong, S.-G. (2020). Investigation of erosion behavior of 304 stainless steel under solid–liquid jet flow impinging at 30°. Petroleum Science, 17, 1135–1150. https://doi.org/10.1007/s12182-020-00473-7
  • Guo, B., Li, Y. H., Xiao, Y. X., Ahn, S. H., Wu, X., Zeng, C. J., & Wang, Z. W. (2021). Numerical analysis of sand erosion for a Pelton turbine injector at high concentration. Earth and Environmental Science, 627, 012022.
  • Safaei, M. R., Mahian, O., Garoosi, F., Hooman, K., Karimipour, A., Kazi, S. N., & Gharehkhani, S. (2014). Investigation of micro- and nanosized particle erosion in a 90° pipe bend using a two-phase discrete phase model. The Scientific World Journal. https://doi.org/10.1155/2014/740578
  • Vieira, R. E., Mansouri, A., McLaury, B. S., & Shirazi, S. A. (2016). Experimental and computational study of erosion in elbows due to sand particles in air flow. Powder Technology, 288, 339–353. https://doi.org/10.1016/j.powtec.2015.11.028
  • Al-Baghdadi, M. A., Resan, K. K., & Al-Wail, M. (2017). CFD investigation of the erosion severity in 3D flow elbow during crude oil contaminated sand transportation. Engineering and Technology Journal, 35, 930–935. https://doi.org/10.30684/etj.35.9A.10
  • Sanni, S. E., Olawale, A. S., & Adefila, S. S. (2015). Modeling of sand and crude oil flow in horizontal pipes during crude oil transportation. Journal of Engineering, 1–7. https://doi.org/10.1155/2015/457860
  • Parsi, M., Najmi, K., & Najafifard, F. A. (2014). Comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications. Journal of Natural Gas Science and Engineering, 21, 850–873. https://doi.org/10.1016/j.jngse.2014.10.001
  • El-Sawaf, I. A., Halawa, M. A., Younes, M. A., & Teaima, I. R. (2011). Study of the different parameters that influence on the performance of water jet pump. Fifteenth International Water Technology Conference, Egypt.
  • Song, X. G., Park, J. H., Kim, S. G., & Park, Y. C. (2013). Performance comparison and erosion prediction of jet pumps by using a numerical method. Mathematical and Computer Modelling, 57, 245–253. https://doi.org/10.1016/j.mcm.2011.06.040
  • Jafari, A., & Abbasi, H. R. (2020). Investigation of parameters influencing erosive wear using DEM. Friction, 8(1), 136–150. https://doi.org/10.1007/s40544-018-0252-4
  • Murugan, K., & Karthikeyan, S. (2018). CFD modelling, analysis and validation of slurry erosion setup with naval brass. JAC: A Journal of Composition Theory, 11(10), 63-72.
  • Finn, J. R., & Doğan, Ö. N. (2019). Analyzing the potential for erosion in a supercritical CO2 turbine nozzle with large eddy simulation. Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers Digital Collection. https://doi.org/10.1115/GT2019-91791
  • Castorrini, A., Corsini, A., Rispoli, F., Venturini, P., Takizawa, K., & Tezduyar, T. E. (2019). Computational analysis of performance deterioration of a wind turbine blade strip subjected to environmental erosion. Computational Mechanics, 64(4), 1133-1153. https://doi.org/10.1007/s00466-019-01697-0
  • Qian, Z., Zhao, Z., Guo, Z., Thapa, B. S., & Thapa, B. (2020). Erosion wear on runner of Francis turbine in Jhimruk Hydroelectric Center. Journal of Fluids Engineering, 142(9). https://doi.org/10.1115/1.4047230
  • Pandhare, S. R., & Pitale, A. K. (2017). Study the performance of water jet pump by changing the angle of mixing nozzle. International Journal of Scientific Research in Science and Technology, 3(3), 538.
  • Pitale, A. K., & Pandhare, S. R. (2017). Experimental investigation of jet pump at different nozzle-to-throat spacing to nozzle diameter ratio (X). International Journal of Scientific Research in Science and Technology, 3(4), 168-171.
  • Sheha, A. A. A., Nasr, M., Hosien, M. A., & Wahba, E. (2018). Computational and experimental study on the water-jet pump performance. Journal of Applied Fluid Mechanics, 11(4), 1013-1020. https://doi.org/10.29252/jafm.11.04.28407
  • Sakuragi, S., & Zhao, S. (2018). Operating characteristics of multi-injection type underwater jet pump. American Journal of Mechanics and Applications, 6(3), 68-77.
  • Yam, K. S., Roy, S., Lee, V. C. C., & Law, M. C. (2020). Numerical analysis of erosion pattern on pipe elbow bend with swirling flows. 2nd International Conference on Materials Technology and Energy, IOP Conference Series: Materials Science and Engineering, 943, 012037. https://doi.org/10.1088/1757-899X/943/1/012037
  • Banakermani, M. R., Naderan, H., & Saffar-Avval, M. (2018). An investigation of erosion prediction for 15° to 90° elbows by numerical simulation of gas-solid flow. Powder Technology, 334, 9–26. https://doi.org/10.1016/j.powtec.2018.04.033
  • Kosinska, A., Balakin, B. V., & Kosinski, P. (2020). Theoretical analysis of erosion in elbows due to flows with nano- and micro-size particles. Powder Technology, 364, 484–493. https://doi.org/10.1016/j.powtec.2020.02.002
  • Doroshenko, Y., Zapukhliak, V., Grudz, Y., Poberezhny, L., Hrytsanchuk, A., & Popovych, P. (2020). Numerical simulation of the stress state of an erosion-worn tee of the main gas pipeline. Archives of Material Science and Engineering, 101, 63-78. https://doi.org/10.5604/01.3001.0014.1192
  • Bai, X., Yao, Y., Han, Z., Zhang, J., & Zhang, S. (2020). Study of solid particle erosion on helicopter rotor blades surfaces. Applied Sciences, 10(3), 977. https://doi.org/10.3390/app10030977
  • Yan, H., Li, J., Cai, C., & Ren, Y. (2020). Numerical investigation of erosion wear in the hydraulic amplifier of the deflector jet servo valve. Applied Sciences, 10(4), 1299. https://doi.org/10.3390/app10041299
  • Yanan, G., & Tingzhou, N. (2020). Numerical simulation and experiment analysis on erosion law of fractured elbow pipe. Academic Journal of Manufacturing Engineering, 18(2), 109-115.
  • Kannojiya, V., & Kumar, S. (2020). Assessment of optimum slurry pipe design for minimum erosion. Scientia Iranica, 27(5), 2409-2418. https://doi.org/10.24200/SCI.2019.52073.2519
  • Kumar, K., Kumar, S., Singh, G., Singh, J. P., & Singh, J. (2017). Erosion wear investigation of HVOF sprayed WC-10Co4Cr coating on slurry pipeline materials. Coatings, 7(4), 54. https://doi.org/10.3390/coatings7040054
  • Farokhipour, A., Mansoori, Z., Saffar-Avval, M., & Ahmadi, G. (2018). Numerical modeling of sand particle erosion at return bends in gas-particle two-phase flow. Transactions B: Mechanical Engineering, Scientia Iranica B, 25(6), 3231-3242. https://doi.org/10.24200/SCI.2018.50801.1871
  • Pang, A. L. J., Skote, M., & Lim, S. Y. (2016). Modelling high Re flow around a 2D cylindrical bluff body using the k-ω (SST) turbulence model. Progress in Computational Fluid Dynamics, An International Journal, 16(1), 48-57. https://doi.org/10.1504/PCFD.2016.074225
  • Al-Baghdadi, M. A. R. S. (2015). Applications of computational fluid dynamics and finite element methods in engineering education (Vol. 1). International Energy and Environment Foundation.
  • Finnie, I. (1960). Erosion of surfaces by solid particles. Wear, 3(2), 87–103. https://doi.org/10.1016/0043-1648(60)90055-7
  • McLaury, B. S., Shirazi, S. A., Shadley, J. R., & Rybicki, E. F. (1996). Modelling erosion in chokes. Proceedings of the ASME Fluids Engineering Summer Meeting, San Diego, California.
  • Oka, Y. I., Okamura, K., & Yoshida, T. (2005). Practical estimation of erosion damage caused by solid particle impact. Part 1: Effects of impact parameters on a predictive equation. Wear, 259, 95–101. https://doi.org/10.1016/j.wear.2005.01.039
  • Oka, Y. I., & Yoshida, T. (2005). Practical estimation of erosion damage caused by solid particle impact. Part 2: Mechanical properties of materials directly associated with erosion damage. Wear, 259, 102–109. https://doi.org/10.1016/j.wear.2005.01.040
  • Hamed, A., & Tabakoff, W. (2006). Erosion and deposition in turbomachinery. Journal of Propulsion and Power, 22(2), 350-360. https://doi.org/10.2514/1.18462
There are 41 citations in total.

Details

Primary Language English
Subjects Numerical Methods in Mechanical Engineering
Journal Section Research Article
Authors

Ergin Kosa 0000-0002-4607-4115

Yaşar Mutlu 0000-0002-5460-5609

Early Pub Date October 13, 2024
Publication Date December 20, 2024
Submission Date June 24, 2024
Acceptance Date August 22, 2024
Published in Issue Year 2024 Volume: 8 Issue: 4

Cite

APA Kosa, E., & Mutlu, Y. (2024). Erosive-abrasive wear modeling of a water jet pump in a slurry medium. European Mechanical Science, 8(4), 257-266. https://doi.org/10.26701/ems.1504033

Dergi TR Dizin'de Taranmaktadır.

Flag Counter