Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 1, 25 - 37, 20.03.2025
https://doi.org/10.26701/ems.1616622

Abstract

References

  • Segal, V. M. (1999). Equal channel angular extrusion: From macromechanics to structure formation. Materials Science and Engineering: A, 271(1-2), 322–333.
  • Whang, S. H. (Ed.). (2011). Nanostructured metals and alloys: Processing, microstructure, mechanical properties and applications. Elsevier.
  • Naik, S. N., & Walley, S. M. (2020). The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals. Journal of Materials Science, 55(7), 2661–2681.
  • Valiev, R. Z., Krasilnikov, N. A., & Tsenev, N. K. (1991). Plastic deformation of alloys with submicron-grained structure. Materials Science and Engineering: A, 137, 35–40.
  • Valiev, R. Z., Kozlov, E. V., Ivanov, Y. F., Lian, J., Nazarov, A. A., & Baudelet, B. (1994). Deformation behaviour of ultra-fine-grained copper. Acta Metallurgica et Materialia, 42(7), 2467–2475.
  • Alexandrov, I. V., & Valiev, R. Z. (1999). Nanostructures from severe plastic deformation and mechanisms of large-strain work hardening. Nanostructured Materials, 12(5-8), 709–712.
  • Abioye, O. P., Atanda, P. O., Osinkolu, G. A., Abioye, A. A., Olumor, I. D., Odunlami, O. A., & Afolalu, S. A. (2019). Influence of equal channel angular extrusion on the tensile behavior of Aluminum 6063 alloy. Procedia Manufacturing, 35, 1337–1343.
  • Ding, S. X., Lee, W. T., Chang, C. P., Chang, L. W., & Kao, P. W. (2008). Improvement of strength of magnesium alloy processed by equal channel angular extrusion. Scripta Materialia, 59(9), 1006–1009.
  • Jiang, J., Wang, Y., Du, Z., Qu, J., Sun, Y., & Luo, S. (2010). Enhancing room temperature mechanical properties of Mg–9Al–Zn alloy by multi-pass equal channel angular extrusion. Journal of Materials Processing Technology, 210(5), 751–758.
  • Martynenko, N. S., Lukyanova, E. A., Serebryany, V. N., Gorshenkov, M. V., Shchetinin, I. V., Raab, G. I., ... & Estrin, Y. (2018). Increasing strength and ductility of magnesium alloy WE43 by equal-channel angular pressing. Materials Science and Engineering: A, 712, 625–629.
  • Tolaminejad, B., & Dehghani, K. (2012). Microstructural characterization and mechanical properties of nanostructured AA1070 aluminum after equal channel angular extrusion. Materials & Design, 34, 285–292.
  • Yang, W., Quan, G. F., Ji, B., Wan, Y. F., Zhou, H., Zheng, J., & Yin, D. D. (2022). Effect of Y content and equal channel angular pressing on the microstructure, texture and mechanical property of extruded Mg-Y alloys. Journal of Magnesium and Alloys, 10(1), 195–208.
  • Ferrasse, S., Hartwig, K. T., Goforth, R. E., & Segal, V. M. (1997). Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion. Metallurgical and Materials Transactions A, 28, 1047–1057.
  • Langdon, T. G., Furukawa, M., Nemoto, M., & Horita, Z. (2000). Using equal-channel angular pressing for refining grain size. JOM, 52(4), 30–33.
  • Tang, C. L., Hao, L. I., & Li, S. Y. (2016). Effect of processing route on grain refinement in pure copper processed by equal channel angular extrusion. Transactions of Nonferrous Metals Society of China, 26(7), 1736–1744.
  • Savaskan, T., Pürçek, G., & Murphy, S. (2002). Sliding wear of cast zinc-based alloy bearings under static and dynamic loading conditions. Wear, 252(9-10), 693–703.
  • Zhu, Y. H. (2001). Phase transformations of eutectoid Zn-Al alloys. Journal of Materials Science, 36(16), 3973–3980.
  • Osório, W. R., & Garcia, A. (2002). Modeling dendritic structure and mechanical properties of Zn–Al alloys as a function of solidification conditions. Materials Science and Engineering: A, 325(1-2), 103–111.
  • Turhal, M. Ş., & Savaşkan, T. (2003). Relationships between secondary dendrite arm spacing and mechanical properties of Zn-40Al-Cu alloys. Journal of Materials Science, 38, 2639–2646.
  • Liu, Z., Li, P., Xiong, L., Liu, T., & He, L. (2017). High-temperature tensile deformation behavior and microstructure evolution of Ti55 titanium alloy. Materials Science and Engineering: A, 680, 259–269.
  • Kumar, P., Xu, C., & Langdon, T. G. (2005). The significance of grain boundary sliding in the superplastic Zn–22% Al alloy after processing by ECAP. Materials Science and Engineering: A, 410, 447–450.
  • Zhang, Y., Sao-Joao, S., Descartes, S., Kermouche, G., Montheillet, F., & Desrayaud, C. (2020). Microstructural evolution and mechanical properties of ultrafine-grained pure α-iron and Fe-0.02% C steel processed by high-pressure torsion: Influence of second-phase particles. Materials Science and Engineering: A, 795, 139915.
  • Humphreys, F. J., & Hatherly, M. (2004). Recrystallization and related annealing phenomena (2nd ed.). Pergamon.
  • Purcek, G., Altan, B. S., Miskioglu, I., & Patil, A. (2005). Mechanical properties of severely deformed ZA-27 alloy using equal channel angular extrusion. Materials Science and Technology, 21(9), 1044–1048.
  • Nagasekhar, A. V., Tick-Hon, Y., Li, S., & Seow, H. P. (2006). Stress and strain histories in equal channel angular extrusion/pressing. Materials Science and Engineering: A, 423(1-2), 143–147.
  • Ramirez, J. M. H., Bustamante, R. P., Merino, C. A. I., & Morquecho, A. M. A. (2020). Unconventional techniques for the production of light alloys and composites. Springer.
  • Awasthi, A., Saxena, K. K., Dwivedi, R. K., Buddhi, D., & Mohammed, K. A. (2023). Design and analysis of ECAP processing for Al6061 alloy: A microstructure and mechanical property study. International Journal on Interactive Design and Manufacturing (IJIDeM), 17(5), 2309–2321.
  • Alateyah, A. I., Alawad, M. O., Aljohani, T. A., & El-Garaihy, W. H. (2022). Effect of ECAP route type on the microstructural evolution, crystallographic texture, electrochemical behavior and mechanical properties of ZK30 biodegradable magnesium alloy. Materials, 15(17), 6088.
  • El-Shenawy, M., Ahmed, M. M., Nassef, A., El-Hadek, M., Alzahrani, B., Zedan, Y., & El-Garaihy, W. H. (2021). Effect of ECAP on the plastic strain homogeneity, microstructural evolution, crystallographic texture and mechanical properties of AA2xxx aluminum alloy. Metals, 11(6), 938.
  • Maier, V., Merle, B., Göken, M., & Durst, K. (2013). An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures. Journal of Materials Research, 28(9), 1177–1188.
  • Zhao, Y., Guo, H., Shi, Z., Yao, Z., & Zhang, Y. (2011). Microstructure evolution of TA15 titanium alloy subjected to equal channel angular pressing and subsequent annealing at various temperatures. Journal of Materials Processing Technology, 211(8), 1364–1371.
  • Yilmaz, T. A., Totik, Y., Senoz, G. M. L., & Bostan, B. (2022). Microstructure evolution and wear properties of ECAP-treated Al-Zn-Mg alloy: Effect of Route, temperature and number of passes. Materials Today Communications, 33, 104628.
  • Damavandi, E., Nourouzi, S., Rabiee, S. M., Jamaati, R., & Szpunar, J. A. (2021). Effect of Route BC-ECAP on microstructural evolution and mechanical properties of Al–Si–Cu alloy. Journal of Materials Science, 56, 3535–3550.

Nanoindentation evaluation of mechanical and wear properties of Zn-3% Cu-9% Al alloy processed via ECAP

Year 2025, Volume: 9 Issue: 1, 25 - 37, 20.03.2025
https://doi.org/10.26701/ems.1616622

Abstract

This study utilizes equal channel angular pressing (ECAP), also known as equal channel angular extrusion (ECAE), to induce severe plastic deformation in Zn-3% Cu-9%Al (ZCA-9 Al) alloy, resulting in ultrafine-grained structures. ECAP is an unconventional technique used to impart severe plastic deformation to materials, producing ultrafine-grained (UFG) structures. To obtain UFG structures, two well-known Routes, A and Bc, as well as a newly proposed Route, D, were employed and evaluated. Following ECAP processing, the samples were subjected to various tests to assess their tensile properties, creep resistance, and wear track deformation behavior. The results demonstrated that all tested Routes significantly enhanced the tensile properties and creep resistance of ZCA-9 Al alloys. Routes A, Bc, and D increased the ultimate tensile strength (UTS) by 14.42%, 16.34%, and 12.82%, respectively, although they had minimal impact on wear track deformation. Overall, the findings indicate that Routes A, Bc, and D can improve the tensile and creep properties of ZCA-9 Al alloy, with Route Bc showing slightly superior results, though it required a higher extrusion force.

References

  • Segal, V. M. (1999). Equal channel angular extrusion: From macromechanics to structure formation. Materials Science and Engineering: A, 271(1-2), 322–333.
  • Whang, S. H. (Ed.). (2011). Nanostructured metals and alloys: Processing, microstructure, mechanical properties and applications. Elsevier.
  • Naik, S. N., & Walley, S. M. (2020). The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals. Journal of Materials Science, 55(7), 2661–2681.
  • Valiev, R. Z., Krasilnikov, N. A., & Tsenev, N. K. (1991). Plastic deformation of alloys with submicron-grained structure. Materials Science and Engineering: A, 137, 35–40.
  • Valiev, R. Z., Kozlov, E. V., Ivanov, Y. F., Lian, J., Nazarov, A. A., & Baudelet, B. (1994). Deformation behaviour of ultra-fine-grained copper. Acta Metallurgica et Materialia, 42(7), 2467–2475.
  • Alexandrov, I. V., & Valiev, R. Z. (1999). Nanostructures from severe plastic deformation and mechanisms of large-strain work hardening. Nanostructured Materials, 12(5-8), 709–712.
  • Abioye, O. P., Atanda, P. O., Osinkolu, G. A., Abioye, A. A., Olumor, I. D., Odunlami, O. A., & Afolalu, S. A. (2019). Influence of equal channel angular extrusion on the tensile behavior of Aluminum 6063 alloy. Procedia Manufacturing, 35, 1337–1343.
  • Ding, S. X., Lee, W. T., Chang, C. P., Chang, L. W., & Kao, P. W. (2008). Improvement of strength of magnesium alloy processed by equal channel angular extrusion. Scripta Materialia, 59(9), 1006–1009.
  • Jiang, J., Wang, Y., Du, Z., Qu, J., Sun, Y., & Luo, S. (2010). Enhancing room temperature mechanical properties of Mg–9Al–Zn alloy by multi-pass equal channel angular extrusion. Journal of Materials Processing Technology, 210(5), 751–758.
  • Martynenko, N. S., Lukyanova, E. A., Serebryany, V. N., Gorshenkov, M. V., Shchetinin, I. V., Raab, G. I., ... & Estrin, Y. (2018). Increasing strength and ductility of magnesium alloy WE43 by equal-channel angular pressing. Materials Science and Engineering: A, 712, 625–629.
  • Tolaminejad, B., & Dehghani, K. (2012). Microstructural characterization and mechanical properties of nanostructured AA1070 aluminum after equal channel angular extrusion. Materials & Design, 34, 285–292.
  • Yang, W., Quan, G. F., Ji, B., Wan, Y. F., Zhou, H., Zheng, J., & Yin, D. D. (2022). Effect of Y content and equal channel angular pressing on the microstructure, texture and mechanical property of extruded Mg-Y alloys. Journal of Magnesium and Alloys, 10(1), 195–208.
  • Ferrasse, S., Hartwig, K. T., Goforth, R. E., & Segal, V. M. (1997). Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion. Metallurgical and Materials Transactions A, 28, 1047–1057.
  • Langdon, T. G., Furukawa, M., Nemoto, M., & Horita, Z. (2000). Using equal-channel angular pressing for refining grain size. JOM, 52(4), 30–33.
  • Tang, C. L., Hao, L. I., & Li, S. Y. (2016). Effect of processing route on grain refinement in pure copper processed by equal channel angular extrusion. Transactions of Nonferrous Metals Society of China, 26(7), 1736–1744.
  • Savaskan, T., Pürçek, G., & Murphy, S. (2002). Sliding wear of cast zinc-based alloy bearings under static and dynamic loading conditions. Wear, 252(9-10), 693–703.
  • Zhu, Y. H. (2001). Phase transformations of eutectoid Zn-Al alloys. Journal of Materials Science, 36(16), 3973–3980.
  • Osório, W. R., & Garcia, A. (2002). Modeling dendritic structure and mechanical properties of Zn–Al alloys as a function of solidification conditions. Materials Science and Engineering: A, 325(1-2), 103–111.
  • Turhal, M. Ş., & Savaşkan, T. (2003). Relationships between secondary dendrite arm spacing and mechanical properties of Zn-40Al-Cu alloys. Journal of Materials Science, 38, 2639–2646.
  • Liu, Z., Li, P., Xiong, L., Liu, T., & He, L. (2017). High-temperature tensile deformation behavior and microstructure evolution of Ti55 titanium alloy. Materials Science and Engineering: A, 680, 259–269.
  • Kumar, P., Xu, C., & Langdon, T. G. (2005). The significance of grain boundary sliding in the superplastic Zn–22% Al alloy after processing by ECAP. Materials Science and Engineering: A, 410, 447–450.
  • Zhang, Y., Sao-Joao, S., Descartes, S., Kermouche, G., Montheillet, F., & Desrayaud, C. (2020). Microstructural evolution and mechanical properties of ultrafine-grained pure α-iron and Fe-0.02% C steel processed by high-pressure torsion: Influence of second-phase particles. Materials Science and Engineering: A, 795, 139915.
  • Humphreys, F. J., & Hatherly, M. (2004). Recrystallization and related annealing phenomena (2nd ed.). Pergamon.
  • Purcek, G., Altan, B. S., Miskioglu, I., & Patil, A. (2005). Mechanical properties of severely deformed ZA-27 alloy using equal channel angular extrusion. Materials Science and Technology, 21(9), 1044–1048.
  • Nagasekhar, A. V., Tick-Hon, Y., Li, S., & Seow, H. P. (2006). Stress and strain histories in equal channel angular extrusion/pressing. Materials Science and Engineering: A, 423(1-2), 143–147.
  • Ramirez, J. M. H., Bustamante, R. P., Merino, C. A. I., & Morquecho, A. M. A. (2020). Unconventional techniques for the production of light alloys and composites. Springer.
  • Awasthi, A., Saxena, K. K., Dwivedi, R. K., Buddhi, D., & Mohammed, K. A. (2023). Design and analysis of ECAP processing for Al6061 alloy: A microstructure and mechanical property study. International Journal on Interactive Design and Manufacturing (IJIDeM), 17(5), 2309–2321.
  • Alateyah, A. I., Alawad, M. O., Aljohani, T. A., & El-Garaihy, W. H. (2022). Effect of ECAP route type on the microstructural evolution, crystallographic texture, electrochemical behavior and mechanical properties of ZK30 biodegradable magnesium alloy. Materials, 15(17), 6088.
  • El-Shenawy, M., Ahmed, M. M., Nassef, A., El-Hadek, M., Alzahrani, B., Zedan, Y., & El-Garaihy, W. H. (2021). Effect of ECAP on the plastic strain homogeneity, microstructural evolution, crystallographic texture and mechanical properties of AA2xxx aluminum alloy. Metals, 11(6), 938.
  • Maier, V., Merle, B., Göken, M., & Durst, K. (2013). An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures. Journal of Materials Research, 28(9), 1177–1188.
  • Zhao, Y., Guo, H., Shi, Z., Yao, Z., & Zhang, Y. (2011). Microstructure evolution of TA15 titanium alloy subjected to equal channel angular pressing and subsequent annealing at various temperatures. Journal of Materials Processing Technology, 211(8), 1364–1371.
  • Yilmaz, T. A., Totik, Y., Senoz, G. M. L., & Bostan, B. (2022). Microstructure evolution and wear properties of ECAP-treated Al-Zn-Mg alloy: Effect of Route, temperature and number of passes. Materials Today Communications, 33, 104628.
  • Damavandi, E., Nourouzi, S., Rabiee, S. M., Jamaati, R., & Szpunar, J. A. (2021). Effect of Route BC-ECAP on microstructural evolution and mechanical properties of Al–Si–Cu alloy. Journal of Materials Science, 56, 3535–3550.
There are 33 citations in total.

Details

Primary Language English
Subjects Solid Mechanics
Journal Section Research Article
Authors

Serkan Ateş 0000-0002-5858-5190

Early Pub Date March 9, 2025
Publication Date March 20, 2025
Submission Date January 10, 2025
Acceptance Date March 6, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Ateş, S. (2025). Nanoindentation evaluation of mechanical and wear properties of Zn-3% Cu-9% Al alloy processed via ECAP. European Mechanical Science, 9(1), 25-37. https://doi.org/10.26701/ems.1616622

Dergi TR Dizin'de Taranmaktadır.

Flag Counter