Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 2, 139 - 154, 20.06.2025
https://doi.org/10.26701/ems.1643484

Abstract

References

  • Furtado, C., Tavares, R. P., Arteiro, A., Xavier, J., Linde, P., Wardle, B. L., & Camanho, P. P. (2021). Effects of ply thickness and architecture on the strength of composite sub-structures. Composite Structures, 256, 113061. https://doi.org/10.1016/j.compstruct.2020.113061
  • Okutan, B., & Karakuzu, R. (2003). The strength of pinned joints in laminated composites. Composites Science and Technology, 63(6), 893-905. https://doi.org/10.1016/S0266-3538(02)00313-5
  • Cameron, C. J., Larsson, J., Loukil, M. S., Murtagh, T., & Wennhage, P. (2021). Bearing strength performance of mixed thin/thick-ply, quasi-isotropic composite laminates. Composite Structures, 261, 113312. https://doi.org/10.1016/j.compstruct.2020.113312
  • [Okutan Baba] Okutan Baba, B. (2006). Behavior of pin-loaded laminated composites. Experimental Mechanics, 46, 589-600. https://doi.org/10.1007/s11340-006-8735-z
  • Sen, F., Pakdil, M., Sayman, O., & Benli, S. (2008). Experimental failure analysis of mechanically fastened joints with clearance in composite laminates under preload. Materials & Design, 29(6), 1159-1169. https://doi.org/10.1016/j.matdes.2007.05.009
  • Lim, T. S., & Kim, B. C. (2006). Fatigue characteristics of the bolted joints for unidirectional composite laminates. Composite Structures, 72(1), 58-68. https://doi.org/10.1016/j.compstruct.2004.10.013
  • Khashaba, U. A., Sebaey, T. A., & Alnefaie, K. A. (2013). Failure and reliability analysis of pinned-joints composite laminates: Effects of stacking sequences. Composites Part B: Engineering, 45(1), 1694-1703. https://doi.org/10.1016/j.compositesb.2012.09.066
  • Ataş, A., & Soutis, C. (2013). Subcritical damage mechanisms of bolted joints in CFRP composite laminates. Composites Part B: Engineering, 54, 20-27. https://doi.org/10.1016/j.compositesb.2013.04.071
  • Xiao, Y., & Ishikawa, T. (2005). Bearing strength and failure behavior of bolted composite joints (part I: Experimental investigation). Composites Science and Technology, 65(7-8), 1022-1031. https://doi.org/10.1016/j.compscitech.2005.02.011
  • Broutelle, M., Lachaud, F., Barrièrre, L., Daidié, A., Chardonneau, A., & Bouillon, F. (2020). Bearing damage identification in oxide/oxide ceramic matrix composite with a new test design. Composite Structures, 236, 111902. https://doi.org/10.1016/j.compstruct.2020.111902
  • Zhuang, F., Chen, P., Arteiro, A., & Camanho, P. P. (2019). Mesoscale modelling of damage in half-hole pin bearing composite laminate specimens. Composite Structures, 214, 191-213. https://doi.org/10.1016/j.compstruct.2019.01.06
  • Sola, C., Castanié, B., Michel, L., Lachaud, F., Delabie, A., & Mermoz, E. (2016). On the role of kinking in the bearing failure of composite laminates. Composite Structures, 141, 184-193. https://doi.org/10.1016/j.compstruct.2016.01.058
  • Ireman, T. (1998). Three-dimensional stress analysis of bolted single-lap composite joints. Composite Structures, 43(3), 195-216. https://doi.org/10.1016/S0263-8223(98)00103-2
  • McCarthy, M., McCarthy, C. T., Lawlor, V. P., & Stanley, W. F. (2005). Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints: part I—model development and validation. Composite Structures, 71(2), 140-158. https://doi.org/10.1016/j.compstruct.2004.09.024
  • Tserpes, K. I., Papanikos, P., & Kermanidis, T. H. (2001). A three‐dimensional progressive damage model for bolted joints in composite laminates subjected to tensile loading. Fatigue & Fracture of Engineering Materials & Structures, 24(10), 663-675. https://doi.org/10.1046/j.1460-2695.2001.00424.x
  • Montagne, B., Lachaud, F., Paroissien, E., Martini, D., & Congourdeau, F. (2020). Failure analysis of single lap composite laminate bolted joints: Comparison of experimental and numerical tests. Composite Structures, 238, 111949. https://doi.org/10.1016/j.compstruct.2020.111949
  • Hu, X. F., Haris, A., Ridha, M., Tan, V. B. C., & Tay, T. E. (2018). Progressive failure of bolted single-lap joints of woven fibre-reinforced composites. Composite Structures, 189, 443-454. https://doi.org/10.1016/j.compstruct.2018.01.104
  • Wang, J., Qin, T., Mekala, N. R., Li, Y., Heidari-Rarani, M., & Schröder, K. U. (2022). Three-dimensional progressive damage and failure analysis of double-lap composite bolted joints under quasi-static tensile loading. Composite Structures, 285, 115227. https://doi.org/10.1016/j.compstruct.2022.115227
  • Nerilli, F., & Vairo, G. (2017). Progressive damage in composite bolted joints via a computational micromechanical approach. Composites Part B: Engineering, 111, 357-371. https://doi.org/10.1016/j.compositesb.2016.11.056
  • Qingyuan, L., Zhao, Y., Yan, C., Liu, Y., & Pan, W. (2024). Progressive bearing failure analysis and strength prediction method for the initial assembly and tensile process of composite bolted joints. Composites Part A: Applied Science and Manufacturing, 187, 108476. https://doi.org/10.1016/j.compositesa.2024.108476
  • Joseph, A. P., Davidson, P., & Waas, A. M. (2018). Progressive damage and failure analysis of single lap shear and double lap shear bolted joints. Composites Part A: Applied Science and Manufacturing, 113, 264-274. https://doi.org/10.1016/j.compositesa.2018.07.01
  • Shipsha, A., & Burman, M. (2020). Failure mechanisms in NCF composite bolted joints: Experiments and FE model. Composites Part B: Engineering, 192, 107950. https://doi.org/10.1016/j.compositesb.2020.107950
  • Cinar, K. (2024). Enhancement of laminate open-hole tensile strength by considering fiber waviness around holes. Journal of Manufacturing Processes, 131, 766-780. https://doi.org/10.1016/j.jmapro.2024.09.079
  • Li, A., Zhang, H., & Yang, D. (2025). Bearing performance and progressive failure analysis of bolted joint in 3D printed pseudo-woven CFRP composite with fibre steering. Composites Part A: Applied Science and Manufacturing, 188, 108526. https://doi.org/10.1016/j.compositesa.2024.108526
  • Abaqus Analysis User’s. Manual. Online Documentation Help: Dassault Systemes; 2016
  • Falcó, O., Ávila, R.L., Tijs, B., & Lopes C.S. (2018). Modelling and simulation methodology for unidirectional composite laminates in a Virtual Test Lab framework, Composite Structures, 190, 137-159. https://doi.org/10.1016/j.compstruct.2018.02.016

The hole-bearing behavior of laminated composites under double-shear tension and pin-crush loading

Year 2025, Volume: 9 Issue: 2, 139 - 154, 20.06.2025
https://doi.org/10.26701/ems.1643484

Abstract

The bearing performance of holes in laminated composite materials is a critical research area due to their increasing use in aerospace and structural applications. This study investigates the mechanical behavior of hole-bearing in laminated composites, focusing on failure mechanisms, load distribution, and the influence of laminate stacking sequences on bearing performance. Finite element analysis (FEA) and experimental testing were used to examine stress concentration around the hole. Additionally, the digital image correlation (DIC) method was employed to monitor the strain field in the pin-bearing zone during the pin-crush test. Results indicate that fiber orientation significantly affects load-bearing capacity, with notable differences between unidirectional (UD) and cross-ply (XP) laminates. A comparison between double-shear tensile loading and pin crush loading for XP and UD samples with 16 plies reveals distinct differences in load-bearing capacity and failure behavior. In the tensile test, XP-16 samples exhibited a gradual increase in load, reaching a peak of approximately 14 kN, followed by a gradual decline. Conversely, the pin-crush test resulted in a lower peak load of 9 kN and exhibited more catastrophic failure, characterized by a sudden drop in load. In contrast, UD samples displayed similar behavior under both loading conditions, with differences observed only at peak load values.

Thanks

The author acknowledges the support of the Tekirdağ Namık Kemal University Research Fund under project code of NKUBAP.06.GAYP.24.549. Also, the author would like to express their sincere gratitude to the Boğaziçi University - Composites Laboratory for providing the necessary facilities, technical support, and equipment used throughout this research

References

  • Furtado, C., Tavares, R. P., Arteiro, A., Xavier, J., Linde, P., Wardle, B. L., & Camanho, P. P. (2021). Effects of ply thickness and architecture on the strength of composite sub-structures. Composite Structures, 256, 113061. https://doi.org/10.1016/j.compstruct.2020.113061
  • Okutan, B., & Karakuzu, R. (2003). The strength of pinned joints in laminated composites. Composites Science and Technology, 63(6), 893-905. https://doi.org/10.1016/S0266-3538(02)00313-5
  • Cameron, C. J., Larsson, J., Loukil, M. S., Murtagh, T., & Wennhage, P. (2021). Bearing strength performance of mixed thin/thick-ply, quasi-isotropic composite laminates. Composite Structures, 261, 113312. https://doi.org/10.1016/j.compstruct.2020.113312
  • [Okutan Baba] Okutan Baba, B. (2006). Behavior of pin-loaded laminated composites. Experimental Mechanics, 46, 589-600. https://doi.org/10.1007/s11340-006-8735-z
  • Sen, F., Pakdil, M., Sayman, O., & Benli, S. (2008). Experimental failure analysis of mechanically fastened joints with clearance in composite laminates under preload. Materials & Design, 29(6), 1159-1169. https://doi.org/10.1016/j.matdes.2007.05.009
  • Lim, T. S., & Kim, B. C. (2006). Fatigue characteristics of the bolted joints for unidirectional composite laminates. Composite Structures, 72(1), 58-68. https://doi.org/10.1016/j.compstruct.2004.10.013
  • Khashaba, U. A., Sebaey, T. A., & Alnefaie, K. A. (2013). Failure and reliability analysis of pinned-joints composite laminates: Effects of stacking sequences. Composites Part B: Engineering, 45(1), 1694-1703. https://doi.org/10.1016/j.compositesb.2012.09.066
  • Ataş, A., & Soutis, C. (2013). Subcritical damage mechanisms of bolted joints in CFRP composite laminates. Composites Part B: Engineering, 54, 20-27. https://doi.org/10.1016/j.compositesb.2013.04.071
  • Xiao, Y., & Ishikawa, T. (2005). Bearing strength and failure behavior of bolted composite joints (part I: Experimental investigation). Composites Science and Technology, 65(7-8), 1022-1031. https://doi.org/10.1016/j.compscitech.2005.02.011
  • Broutelle, M., Lachaud, F., Barrièrre, L., Daidié, A., Chardonneau, A., & Bouillon, F. (2020). Bearing damage identification in oxide/oxide ceramic matrix composite with a new test design. Composite Structures, 236, 111902. https://doi.org/10.1016/j.compstruct.2020.111902
  • Zhuang, F., Chen, P., Arteiro, A., & Camanho, P. P. (2019). Mesoscale modelling of damage in half-hole pin bearing composite laminate specimens. Composite Structures, 214, 191-213. https://doi.org/10.1016/j.compstruct.2019.01.06
  • Sola, C., Castanié, B., Michel, L., Lachaud, F., Delabie, A., & Mermoz, E. (2016). On the role of kinking in the bearing failure of composite laminates. Composite Structures, 141, 184-193. https://doi.org/10.1016/j.compstruct.2016.01.058
  • Ireman, T. (1998). Three-dimensional stress analysis of bolted single-lap composite joints. Composite Structures, 43(3), 195-216. https://doi.org/10.1016/S0263-8223(98)00103-2
  • McCarthy, M., McCarthy, C. T., Lawlor, V. P., & Stanley, W. F. (2005). Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints: part I—model development and validation. Composite Structures, 71(2), 140-158. https://doi.org/10.1016/j.compstruct.2004.09.024
  • Tserpes, K. I., Papanikos, P., & Kermanidis, T. H. (2001). A three‐dimensional progressive damage model for bolted joints in composite laminates subjected to tensile loading. Fatigue & Fracture of Engineering Materials & Structures, 24(10), 663-675. https://doi.org/10.1046/j.1460-2695.2001.00424.x
  • Montagne, B., Lachaud, F., Paroissien, E., Martini, D., & Congourdeau, F. (2020). Failure analysis of single lap composite laminate bolted joints: Comparison of experimental and numerical tests. Composite Structures, 238, 111949. https://doi.org/10.1016/j.compstruct.2020.111949
  • Hu, X. F., Haris, A., Ridha, M., Tan, V. B. C., & Tay, T. E. (2018). Progressive failure of bolted single-lap joints of woven fibre-reinforced composites. Composite Structures, 189, 443-454. https://doi.org/10.1016/j.compstruct.2018.01.104
  • Wang, J., Qin, T., Mekala, N. R., Li, Y., Heidari-Rarani, M., & Schröder, K. U. (2022). Three-dimensional progressive damage and failure analysis of double-lap composite bolted joints under quasi-static tensile loading. Composite Structures, 285, 115227. https://doi.org/10.1016/j.compstruct.2022.115227
  • Nerilli, F., & Vairo, G. (2017). Progressive damage in composite bolted joints via a computational micromechanical approach. Composites Part B: Engineering, 111, 357-371. https://doi.org/10.1016/j.compositesb.2016.11.056
  • Qingyuan, L., Zhao, Y., Yan, C., Liu, Y., & Pan, W. (2024). Progressive bearing failure analysis and strength prediction method for the initial assembly and tensile process of composite bolted joints. Composites Part A: Applied Science and Manufacturing, 187, 108476. https://doi.org/10.1016/j.compositesa.2024.108476
  • Joseph, A. P., Davidson, P., & Waas, A. M. (2018). Progressive damage and failure analysis of single lap shear and double lap shear bolted joints. Composites Part A: Applied Science and Manufacturing, 113, 264-274. https://doi.org/10.1016/j.compositesa.2018.07.01
  • Shipsha, A., & Burman, M. (2020). Failure mechanisms in NCF composite bolted joints: Experiments and FE model. Composites Part B: Engineering, 192, 107950. https://doi.org/10.1016/j.compositesb.2020.107950
  • Cinar, K. (2024). Enhancement of laminate open-hole tensile strength by considering fiber waviness around holes. Journal of Manufacturing Processes, 131, 766-780. https://doi.org/10.1016/j.jmapro.2024.09.079
  • Li, A., Zhang, H., & Yang, D. (2025). Bearing performance and progressive failure analysis of bolted joint in 3D printed pseudo-woven CFRP composite with fibre steering. Composites Part A: Applied Science and Manufacturing, 188, 108526. https://doi.org/10.1016/j.compositesa.2024.108526
  • Abaqus Analysis User’s. Manual. Online Documentation Help: Dassault Systemes; 2016
  • Falcó, O., Ávila, R.L., Tijs, B., & Lopes C.S. (2018). Modelling and simulation methodology for unidirectional composite laminates in a Virtual Test Lab framework, Composite Structures, 190, 137-159. https://doi.org/10.1016/j.compstruct.2018.02.016
There are 26 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors, Numerical Modelling and Mechanical Characterisation
Journal Section Research Article
Authors

Kenan Çınar 0000-0001-7402-2032

Early Pub Date May 22, 2025
Publication Date June 20, 2025
Submission Date February 20, 2025
Acceptance Date May 8, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Çınar, K. (2025). The hole-bearing behavior of laminated composites under double-shear tension and pin-crush loading. European Mechanical Science, 9(2), 139-154. https://doi.org/10.26701/ems.1643484

Dergi TR Dizin'de Taranmaktadır.

Flag Counter