Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 1, 1 - 15, 29.03.2020

Abstract

References

  • Bencze K, Seiler HG, Sigel A, Sigel H (Eds.) (1994). Handbook on Metals in Clinical and Analytical Chemistry, Marcel Dekker, New York, pp 223-228.
  • Berman E (1980). Toxic Metals and their Analysis. Heyden, London.
  • Biata NR, Nyaba L, RamontjaJ, Mketo N, Nomngongo PN (2017). Determination of antimony and tin in beverages using inductively coupled plasma-optical emission spectrometry after ultrasound-assisted ionic liquid dispersive liquid-liquid phase microextraction Food Chem. 237: 904–911.
  • Council of the European Communities (1976). L129, 23.
  • Council of the European Communities (1998). Council directive relating to the quality of water intended for human consumption (98/83/CE).
  • Dedina J, Tsalev DL (1995). Hydride generation atomic absorption spectrometry, Wiley, Chichester.
  • Erdem A, Eroglu AE (2005). Speciation and preconcentration of inorganic antimony in waters by Duolite GT-73 microcolumn and determination by segmented flow injection-hydride generation atomic absorption spectrometry (SFI-HGAAS). Talanta. 68: 86-92.
  • Fan Z (2007). Determination of antimony(III) and total antimony by single-drop microextraction combined with electrothermal atomic absorption spectrometry. Anal Chim Acta. 585: 300-304.
  • Filella M, Belzile N, Chen YW (2002). Antimony in the environment. A review focused on baturals waters. Earth Sci Rev. 57: 125–176.
  • Fontanella MC, Beone GM, Cattani I (2016). Determination of Sb(III) and Sb(V) by HPLC-Online isotopic dilution- ICP MS. MethodsX. 3: 102–109.
  • Frizzarin RM, Portugal LA, Estela JM, Rocha FR, Cerdà V (2016). On-line lab-in-syringe cloud point extraction for the spectrophotometric determination of antimony. Talanta. 148: 694–699.
  • Fowler BA, Goering PL (1991). Antimony. In: Merian E, ed. Metals and their compounds in the environment: occurrence, analysis, and biological relevance.Weinheim, VCH, pp. 743-750.
  • Henden E, Islek Y, Kavas M, Aksuner N, Yayayuruk O, Ciftci TD, Ilktac R (2011). A study of mechanism of nickel interferences in hydride generation atomic absorption spectrometric determination of arsenic and antimony. Spec Chim Acta B. 66: 793-798.
  • Huang C, Hu B, Jiang Z (2007). Simultaneous speciation of inorganic arsenic and antimony in natural waters by dimercaptosuccinic acid modified mesoporous titanium dioxide micro-column on-line separation and inductively coupled plasma optical emission spectrometry determination. Spectrochim Acta B. 62: 454-460.
  • Ilander A, Vaisanen A (2011). The determination of antimony and arsenic concentrations in fly ash by hydride generation inductively coupled plasma optical emission spectrometry. Anal Chim Acta. 689: 78-183.
  • Kolbe F, Weiss H, Morgenstern P,Wennrich R, Lorenz W, Schurk K, Stanjek H, Daus BJ (2011). Sorption of aqueous antimony and arsenic species onto akaganeite. Colloid Interface Sci. 357: 460–465.
  • Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M (2007). Sorption Isotherms: A Review on physical bases, modeling and measurement. Appl Geochem. 22: 249-275.
  • Lin YA, Jiang SJ, Sahayam AC (2017). Determination of antimony compounds in waters and juices using ion chromatography-inductively coupled plasma mass spectrometry. Food Chem. 230: 76–81.
  • Li Y, Hu B, Xiang G (2008). Simultaneous speciation of inorganic selenium and antimony in water samples by electrothermal vaporization inductively coupled plasma mass spectrometry following selective cloud point extraction. Water Res. 42: 1195-1203.
  • López-García I, Rengevicova S, Muñoz-Sandova lMJ, Hernández-Córdoba M (2017). Speciation of very low amounts of antimony in waters using magnetic core modified silver nanoparticles and electrothermal atomic absorption spectrometry. Talanta. 162: 309–315.
  • Lu L, Wang LB, Ding BZ (2000). High-tensile ductility in nanocrystalline copper. J Mater Res 15:270-273.
  • Müller K, Daus B,Mattusch J, Stärk HJ, Wennrich R (2009). Simultaneous determination of inorganic and organic antimony species by using anion exchange phases for HPLC–ICP-MS and their application to plant extracts of Pteris vittata. Talanta.78: 820–826.
  • Nishad PA, Bhaskarapillai A, Velmurugan S (2017). Enhancing the antimony sorption properties of nano titania-chitosan beads using epichlorohydrin as the crosslinker. J Hazard Mater. 334: 160–167.
  • Nomngongo PN, Ngila JC, Kamau JN, Msagati TAM, Moodley B (2013). Preconcentration of molybdenum, antimony and vanadium in gasolsine samples using Dowex 1-x8 resin and their determination with inductively coupled plasma–optical emission spectrometry. Talanta. 110: 153–159.
  • Pacheco PH, Gil RA, Martinez LD, Polla G, Smichowski P (2007). A fully automated system for inorganic antimony preconcentration and speciation in urine. Anal Chim Acta. 603: 1-7.
  • Renedo OD, Martinez MJA (2007). A novel method for the anodic stripping voltammetry determination of Sb(III) using silver nanoparticle-modified screen-printed electrodes. Electrochem Commun. 9: 820-826.
  • Rojas FS, Ojeda CB, Pavon JMC (2007).Preconcentration of inorganic antimony(III) in environmental samples by PSTH-Dowex microcolumn and determination by FI-ETAAS. Talanta. 72: 951-956.
  • Souza JMO, Tarley CRT (2008). Preconcentration and speciation of Sb(III) and Sb(V) in water samples and blood serum after cloud point extraction using chemometric tools for optimization. Anal Lett. 41: 2465–2486.
  • Starowicz M, Stypuła B, Banas J (2006). Electrochemical synthesis of silver nanoparticles. Electrochem Commun. 8: 227-230.
  • Titretir S, Sık AI, Arslan Y, Ataman OY (2012). Sensitivity improvement for antimony determination by using in-situ atom trapping in a slotted quartz tube and flame atomic absorption spectrometry. Spectrochim Acta B. 77: 63–68.
  • United States Environmental Protection Agency (USEPA) (1979). Water Related Fate of the 129 Priority Pollutants, EP-440r4-79-029A.
  • USEPA National Primary Drinking Water Standards (2003). Office of Water (4606M), EPA 816-F-03–016.
  • Umpleby RJ, Baxter SC, Bode M, Berch Jr JK, Shah RN, Shimizu KD (2001).Characterization of molecularly imprinted polymers with the Langmuir−Freundlich isotherm. Anal Chim Acta. 435: 35-42.
  • Welch CM, Compton RG (2006). The use of nanoparticles in electroanalysis: a review. Anal Bioanal Chem. 384: 601-619.
  • Yoon M, Kim Y, Kim YM, Volkov V, Song HJ, Park YJ, Park IW (2005). Superparamagnetic properties of nickel nanoparticles in an ion-exchange polymer film. Mater Chem Phys. 91: 104-107.
  • Yu C, Cai Q, Guo ZX, Yang Z, Khoo SB (2002). Antimony speciation by inductively coupled plasma mass spectrometry using solid phase extraction cartridges. Analyst. 127: 1380-1385.
  • Zih-Perenyi K, Jankovics P, Sugar E, Lasztity A (2008). Solid phase chelating extraction and separation of inorganic antimony species in pharmaceutical and water samples for graphite furnace atomic absorption spectrometry. Spectrochim Acta Part B. 63: 445-449.
  • Zhang L, Morita Y, Sakuragawa A, Isozaki A (2007). Inorganic speciation of As(III, V), Se(IV, VI) and Sb(III, V) in natural water with GF-AAS using solid phase extraction technology. Talanta. 72: 723-729.
  • Zheng FY, Qian SH, Li SX, Huang XQ, Lin LX (2006). Speciation of antimony by preconcentration of Sb(III) and Sb(V) in water samples onto nanometer-size titanium dioxide and selective determination by flow injection–hydride generation– atomic absorption spectrometry. Anal. Sci.22: 1319-1322.

Separation/preconcentration of antimony(III) by nickel/nickel boride nanoparticles prior to hydride generation atomic absorption spectrometric determination

Year 2020, Volume: 3 Issue: 1, 1 - 15, 29.03.2020

Abstract

A new, simple, fast and inexpensive method has been developed for the preconcentration of trace amounts of antimony(III) ions using nickel/nickel boride nanoparticles prior to their determination by hydride generation atomic absorption spectrometry. Optimization of the analytical parameters including initial pH, sorbent amount, contact time, sample volume, eluent type, and interference effects have been performed. Under the optimized conditions, the enrichment factor was 25 and the limit of detection was 0.02 µg/L. Calibration graph was obtained in the range of 0.08-0.80 µg/L with a correlation coefficient of 0.9924. The sorption capacity of the nickel/nickel boride nanoparticles was found to be as high as 2500 mg/g. The proposed method was applied to tap water and bottled drinking water. The quantitative recovery values were obtained in the range of 95-104 %. Langmuir and Freundlich adsorption models were evaluated and the results showed that the sorption process fitted the Langmuir isotherm and monolayer adsorption process occurred. The proposed method was validated with a certified reference material. With the high capacity of the novel nickel/nickel boride nanosorbent, dynamic calibration range with suitable limit of detection and quantification, suitable enrichment factor, rapidity and cost-effectiveness, the proposed method is ideal for the preconcentration and determination of antimony(III).

References

  • Bencze K, Seiler HG, Sigel A, Sigel H (Eds.) (1994). Handbook on Metals in Clinical and Analytical Chemistry, Marcel Dekker, New York, pp 223-228.
  • Berman E (1980). Toxic Metals and their Analysis. Heyden, London.
  • Biata NR, Nyaba L, RamontjaJ, Mketo N, Nomngongo PN (2017). Determination of antimony and tin in beverages using inductively coupled plasma-optical emission spectrometry after ultrasound-assisted ionic liquid dispersive liquid-liquid phase microextraction Food Chem. 237: 904–911.
  • Council of the European Communities (1976). L129, 23.
  • Council of the European Communities (1998). Council directive relating to the quality of water intended for human consumption (98/83/CE).
  • Dedina J, Tsalev DL (1995). Hydride generation atomic absorption spectrometry, Wiley, Chichester.
  • Erdem A, Eroglu AE (2005). Speciation and preconcentration of inorganic antimony in waters by Duolite GT-73 microcolumn and determination by segmented flow injection-hydride generation atomic absorption spectrometry (SFI-HGAAS). Talanta. 68: 86-92.
  • Fan Z (2007). Determination of antimony(III) and total antimony by single-drop microextraction combined with electrothermal atomic absorption spectrometry. Anal Chim Acta. 585: 300-304.
  • Filella M, Belzile N, Chen YW (2002). Antimony in the environment. A review focused on baturals waters. Earth Sci Rev. 57: 125–176.
  • Fontanella MC, Beone GM, Cattani I (2016). Determination of Sb(III) and Sb(V) by HPLC-Online isotopic dilution- ICP MS. MethodsX. 3: 102–109.
  • Frizzarin RM, Portugal LA, Estela JM, Rocha FR, Cerdà V (2016). On-line lab-in-syringe cloud point extraction for the spectrophotometric determination of antimony. Talanta. 148: 694–699.
  • Fowler BA, Goering PL (1991). Antimony. In: Merian E, ed. Metals and their compounds in the environment: occurrence, analysis, and biological relevance.Weinheim, VCH, pp. 743-750.
  • Henden E, Islek Y, Kavas M, Aksuner N, Yayayuruk O, Ciftci TD, Ilktac R (2011). A study of mechanism of nickel interferences in hydride generation atomic absorption spectrometric determination of arsenic and antimony. Spec Chim Acta B. 66: 793-798.
  • Huang C, Hu B, Jiang Z (2007). Simultaneous speciation of inorganic arsenic and antimony in natural waters by dimercaptosuccinic acid modified mesoporous titanium dioxide micro-column on-line separation and inductively coupled plasma optical emission spectrometry determination. Spectrochim Acta B. 62: 454-460.
  • Ilander A, Vaisanen A (2011). The determination of antimony and arsenic concentrations in fly ash by hydride generation inductively coupled plasma optical emission spectrometry. Anal Chim Acta. 689: 78-183.
  • Kolbe F, Weiss H, Morgenstern P,Wennrich R, Lorenz W, Schurk K, Stanjek H, Daus BJ (2011). Sorption of aqueous antimony and arsenic species onto akaganeite. Colloid Interface Sci. 357: 460–465.
  • Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M (2007). Sorption Isotherms: A Review on physical bases, modeling and measurement. Appl Geochem. 22: 249-275.
  • Lin YA, Jiang SJ, Sahayam AC (2017). Determination of antimony compounds in waters and juices using ion chromatography-inductively coupled plasma mass spectrometry. Food Chem. 230: 76–81.
  • Li Y, Hu B, Xiang G (2008). Simultaneous speciation of inorganic selenium and antimony in water samples by electrothermal vaporization inductively coupled plasma mass spectrometry following selective cloud point extraction. Water Res. 42: 1195-1203.
  • López-García I, Rengevicova S, Muñoz-Sandova lMJ, Hernández-Córdoba M (2017). Speciation of very low amounts of antimony in waters using magnetic core modified silver nanoparticles and electrothermal atomic absorption spectrometry. Talanta. 162: 309–315.
  • Lu L, Wang LB, Ding BZ (2000). High-tensile ductility in nanocrystalline copper. J Mater Res 15:270-273.
  • Müller K, Daus B,Mattusch J, Stärk HJ, Wennrich R (2009). Simultaneous determination of inorganic and organic antimony species by using anion exchange phases for HPLC–ICP-MS and their application to plant extracts of Pteris vittata. Talanta.78: 820–826.
  • Nishad PA, Bhaskarapillai A, Velmurugan S (2017). Enhancing the antimony sorption properties of nano titania-chitosan beads using epichlorohydrin as the crosslinker. J Hazard Mater. 334: 160–167.
  • Nomngongo PN, Ngila JC, Kamau JN, Msagati TAM, Moodley B (2013). Preconcentration of molybdenum, antimony and vanadium in gasolsine samples using Dowex 1-x8 resin and their determination with inductively coupled plasma–optical emission spectrometry. Talanta. 110: 153–159.
  • Pacheco PH, Gil RA, Martinez LD, Polla G, Smichowski P (2007). A fully automated system for inorganic antimony preconcentration and speciation in urine. Anal Chim Acta. 603: 1-7.
  • Renedo OD, Martinez MJA (2007). A novel method for the anodic stripping voltammetry determination of Sb(III) using silver nanoparticle-modified screen-printed electrodes. Electrochem Commun. 9: 820-826.
  • Rojas FS, Ojeda CB, Pavon JMC (2007).Preconcentration of inorganic antimony(III) in environmental samples by PSTH-Dowex microcolumn and determination by FI-ETAAS. Talanta. 72: 951-956.
  • Souza JMO, Tarley CRT (2008). Preconcentration and speciation of Sb(III) and Sb(V) in water samples and blood serum after cloud point extraction using chemometric tools for optimization. Anal Lett. 41: 2465–2486.
  • Starowicz M, Stypuła B, Banas J (2006). Electrochemical synthesis of silver nanoparticles. Electrochem Commun. 8: 227-230.
  • Titretir S, Sık AI, Arslan Y, Ataman OY (2012). Sensitivity improvement for antimony determination by using in-situ atom trapping in a slotted quartz tube and flame atomic absorption spectrometry. Spectrochim Acta B. 77: 63–68.
  • United States Environmental Protection Agency (USEPA) (1979). Water Related Fate of the 129 Priority Pollutants, EP-440r4-79-029A.
  • USEPA National Primary Drinking Water Standards (2003). Office of Water (4606M), EPA 816-F-03–016.
  • Umpleby RJ, Baxter SC, Bode M, Berch Jr JK, Shah RN, Shimizu KD (2001).Characterization of molecularly imprinted polymers with the Langmuir−Freundlich isotherm. Anal Chim Acta. 435: 35-42.
  • Welch CM, Compton RG (2006). The use of nanoparticles in electroanalysis: a review. Anal Bioanal Chem. 384: 601-619.
  • Yoon M, Kim Y, Kim YM, Volkov V, Song HJ, Park YJ, Park IW (2005). Superparamagnetic properties of nickel nanoparticles in an ion-exchange polymer film. Mater Chem Phys. 91: 104-107.
  • Yu C, Cai Q, Guo ZX, Yang Z, Khoo SB (2002). Antimony speciation by inductively coupled plasma mass spectrometry using solid phase extraction cartridges. Analyst. 127: 1380-1385.
  • Zih-Perenyi K, Jankovics P, Sugar E, Lasztity A (2008). Solid phase chelating extraction and separation of inorganic antimony species in pharmaceutical and water samples for graphite furnace atomic absorption spectrometry. Spectrochim Acta Part B. 63: 445-449.
  • Zhang L, Morita Y, Sakuragawa A, Isozaki A (2007). Inorganic speciation of As(III, V), Se(IV, VI) and Sb(III, V) in natural water with GF-AAS using solid phase extraction technology. Talanta. 72: 723-729.
  • Zheng FY, Qian SH, Li SX, Huang XQ, Lin LX (2006). Speciation of antimony by preconcentration of Sb(III) and Sb(V) in water samples onto nanometer-size titanium dioxide and selective determination by flow injection–hydride generation– atomic absorption spectrometry. Anal. Sci.22: 1319-1322.
There are 39 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Miray Kavas

Nur Erdem

Raif Ilktac

Emür Henden This is me

Publication Date March 29, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Kavas, M., Erdem, N., Ilktac, R., Henden, E. (2020). Separation/preconcentration of antimony(III) by nickel/nickel boride nanoparticles prior to hydride generation atomic absorption spectrometric determination. EMU Journal of Pharmaceutical Sciences, 3(1), 1-15.
AMA Kavas M, Erdem N, Ilktac R, Henden E. Separation/preconcentration of antimony(III) by nickel/nickel boride nanoparticles prior to hydride generation atomic absorption spectrometric determination. EMUJPharmSci. March 2020;3(1):1-15.
Chicago Kavas, Miray, Nur Erdem, Raif Ilktac, and Emür Henden. “Separation/preconcentration of antimony(III) by nickel/Nickel Boride Nanoparticles Prior to Hydride Generation Atomic Absorption Spectrometric Determination”. EMU Journal of Pharmaceutical Sciences 3, no. 1 (March 2020): 1-15.
EndNote Kavas M, Erdem N, Ilktac R, Henden E (March 1, 2020) Separation/preconcentration of antimony(III) by nickel/nickel boride nanoparticles prior to hydride generation atomic absorption spectrometric determination. EMU Journal of Pharmaceutical Sciences 3 1 1–15.
IEEE M. Kavas, N. Erdem, R. Ilktac, and E. Henden, “Separation/preconcentration of antimony(III) by nickel/nickel boride nanoparticles prior to hydride generation atomic absorption spectrometric determination”, EMUJPharmSci, vol. 3, no. 1, pp. 1–15, 2020.
ISNAD Kavas, Miray et al. “Separation/preconcentration of antimony(III) by nickel/Nickel Boride Nanoparticles Prior to Hydride Generation Atomic Absorption Spectrometric Determination”. EMU Journal of Pharmaceutical Sciences 3/1 (March 2020), 1-15.
JAMA Kavas M, Erdem N, Ilktac R, Henden E. Separation/preconcentration of antimony(III) by nickel/nickel boride nanoparticles prior to hydride generation atomic absorption spectrometric determination. EMUJPharmSci. 2020;3:1–15.
MLA Kavas, Miray et al. “Separation/preconcentration of antimony(III) by nickel/Nickel Boride Nanoparticles Prior to Hydride Generation Atomic Absorption Spectrometric Determination”. EMU Journal of Pharmaceutical Sciences, vol. 3, no. 1, 2020, pp. 1-15.
Vancouver Kavas M, Erdem N, Ilktac R, Henden E. Separation/preconcentration of antimony(III) by nickel/nickel boride nanoparticles prior to hydride generation atomic absorption spectrometric determination. EMUJPharmSci. 2020;3(1):1-15.