Review Article
BibTex RIS Cite

Sustainable Battery Management in the Age of Electromobility

Year 2025, Volume: 5 Issue: 1st Future of Vehicles Conf., 18 - 27, 28.12.2025
https://doi.org/10.64808/engineeringperspective.1791151

Abstract

The rapid spread of electric vehicles offers numerous opportunities to reduce greenhouse gas emissions, but also creates new and complex challenges for the automotive industry, particularly in terms of battery life cycle management. Electric cars are currently powered mostly by lithium-ion batteries, which rely on critical raw materials such as lithium, cobalt, nickel, and manganese. These resources are limited, and their extraction often involves energy-intensive and polluting mining processes that can have a serious impact on soil, water resources, and local communities. As demand for electric vehicles grows worldwide, so does the pressure on the sustainability of raw material supplies. The efficient recycling of batteries plays a key role in solving these problems. Recycling not only reduces the demand for primary raw materials, but also reduces waste and contributes to lowering the environmental footprint of electromobility. The study provides a comprehensive overview of the methods currently used to recycle electric vehicle batteries. The most common technologies include pyrometallurgical processes, which recover metals through high-temperature smelting, hydrometallurgical methods, which use chemical solutions to extract valuable materials, and direct recycling, which aims to reuse individual battery components directly. Each solution has its own advantages and limitations in terms of efficiency, cost, environmental safety, and industrial scalability. The study also pays special attention to new, innovative approaches. Automated dismantling technologies, for example, can make dismantling processes safer and faster, while reducing risks to human health. Finally, the regulatory environment and industry practices also play a key role in ensuring the long-term sustainability of battery recycling and the supply chain. The aim of the study is to contribute to the development of a circular automotive industry and to support the spread of sustainable battery management from both a technological and industrial perspective.

References

  • 1. Accardo, A., Dotelli, G., & Spessa, E. (2024). A Study on the Cra-dle-to-Gate Environmental Impacts of Automotive Lithium-ion Bat-teries. Procedia CIRP, 122, 1077-1082. https://doi.org/10.1016/j.procir.2024.02.037
  • 2. Agusdinata, D. B., & Liu, W. (2023). Global sustainability of electric vehicles minerals: A critical review of news media. The Extractive In-dustries and Society, 13, 101231. https://doi.org/10.1016/j.exis.2023.101231
  • 3. Ballai, G., Sőrés, M. A., Vásárhelyi, L., Szenti, I., Kun, R., Hartmann, B., ... & Kónya, Z. (2023). Exploration of Li‐Ion Batteries during a Long‐Term Heat Endurance Test Using 3D Temporal Microcomput-ed Tomography Investigation. Energy Technology, 11(8), 2300207. https://doi.org/10.1002/ente.202300207
  • 4. Baráth, B., Sütheö, G., & Pekk, L. (2024). Development of a Battery Diagnostic Method Based on CAN Data: Examining the Accuracy of Data Received via a Communication Network. Energies, 17(22), 5808. https://doi.org/10.3390/en17225808
  • 5. Barman, P., Dutta, L., & Azzopardi, B. (2023). Electric vehicle bat-tery supply chain and critical materials: a brief survey of state of the art. Energies, 16(8), 3369. https://doi.org/10.3390/en16083369
  • 6. Capasso, C., Iannucci, L., Patalano, S., Veneri, O., & Vitolo, F. (2024). Design approach for electric vehicle battery packs based on experimentally tested multi-domain models. Journal of Energy Stor-age, 77, 109971. https://doi.org/10.1016/j.est.2023.109971
  • 7. Cerrillo-Gonzalez, M. D. M., Villen-Guzman, M., Vereda-Alonso, C., Rodriguez-Maroto, J. M., & Paz-Garcia, J. M. (2024). Towards sustainable lithium-ion battery recycling: Advancements in circular hydrometallurgy. Processes, 12(7), 1485. https://doi.org/10.3390/pr12071485
  • 8. Cicconi, P., & Kumar, P. (2023). Design approaches for Li-ion bat-tery packs: A review. Journal of Energy Storage, 73, 109197. https://doi.org/10.1016/j.est.2023.109197
  • 9. Dar, A. A., Chen, Z., Zhang, G., Hu, J., Zaghib, K., Deng, S., ... & Sun, S. (2025). Sustainable extraction of critical minerals from waste batteries: A green solvent approach in resource recovery. Batteries, 11(2), 51. https://doi.org/10.3390/batteries11020051
  • 10. Dash, M., Dubey, A. K., Choudhary, T., Liu, Y., Nanda, H. S., & Pati, S. (2025). Critical metal extraction from spent battery cathodes and anticipated developments using next generation green solvents for achieving a net-zero future. Chemical Engineering Journal, 160324. https://doi.org/10.1016/j.cej.2025.160324
  • 11. Evro, S., Ajumobi, A., Mayon, D., & Tomomewo, O. S. (2024). Navigating battery choices: A comparative study of lithium iron phosphate and nickel manganese cobalt battery technologies. Future Batteries, 4, 100007. https://doi.org/10.1016/j.fub.2024.100007
  • 12. Gailani, A., Mokidm, R., El-Dalahmeh, M. A., El-Dalahmeh, M. D., & Al-Greer, M. (2020, September). Analysis of lithium-ion battery cells degradation based on different manufacturers. In 2020 55th In-ternational Universities Power Engineering Conference (UPEC) (pp. 1-6). IEEE. https://doi.org/10.1109/UPEC49904.2020.9209759
  • 13. Gu, X., Bai, H., Cui, X., Zhu, J., Zhuang, W., Li, Z., ... & Song, Z. (2024). Challenges and opportunities for second-life batteries: Key technologies and economy. Renewable and Sustainable Energy Re-views, 192, 114191. https://doi.org/10.1016/j.rser.2023.114191
  • 14. Hathaway, J., Shaarawy, A., Akdeniz, C., Aflakian, A., Stolkin, R., & Rastegarpanah, A. (2023). Towards reuse and recycling of lithium-ion batteries: Tele-robotics for disassembly of electric vehicle batteries. Frontiers in Robotics and AI, 10, 1179296. https://doi.org/10.3389/frobt.2023.1179296
  • 15. He, B., Zheng, H., Tang, K., Xi, P., Li, M., Wei, L., & Guan, Q. (2024). A comprehensive review of lithium-ion battery (LiB) recy-cling technologies and industrial market trend insights. Recycling, 9(1), 9. https://doi.org/10.3390/recycling9010009
  • 16. Hoarau, Q., & Lorang, E. (2022). An assessment of the European regulation on battery recycling for electric vehicles. Energy Policy, 162, 112770. https://doi.org/10.1016/j.enpol.2021.112770
  • 17. Niri, A. J., Poelzer, G. A., Zhang, S. E., Rosenkranz, J., Pettersson, M., & Ghorbani, Y. (2024). Sustainability challenges throughout the electric vehicle battery value chain. Renewable and Sustainable Ener-gy Reviews, 191, 114176. https://doi.org/10.1016/j.rser.2023.114176
  • 18. Javazi, L., Alinaghian, M., & Khosroshahi, H. (2025). Evaluating government policies promoting electric vehicles, considering battery technology, energy saving, and charging infrastructure development: A game theoretic approach. Applied Energy, 390, 125799. https://doi.org/10.1016/j.apenergy.2025.125799
  • 19. Kampker, A., Heimes, H. H., Offermanns, C., Vienenkötter, J., & Robben, T. (2023). Framework and classification of battery system architectures. World Electric Vehicle Journal, 14(4), 88. https://doi.org/10.3390/wevj14040088
  • 20. Khan, N., Ooi, C. A., Alturki, A., Amir, M., Shreasth, & Alharbi, T. (2024). A critical review of battery cell balancing techniques, optimal design, converter topologies, and performance evaluation for optimiz-ing storage system in electric vehicles (vol 11, pg 4999, 2024). Ener-gy Reports, 12, 544-544. https://doi.org/10.1016/j.egyr.2024.04.041
  • 21. Lehtimäki, H., Karhu, M., Kotilainen, J. M., Sairinen, R., Jokilaakso, A., Lassi, U., & Huttunen-Saarivirta, E. (2024). Sustainability of the use of critical raw materials in electric vehicle batteries: A transdisci-plinary review. Environmental challenges, 16, 100966. https://doi.org/10.1016/j.envc.2024.100966
  • 22. Liu, M., Liu, W., Zhang, M., Pan, X., Zhang, Q., Zhang, M., ... & Cui, Z. (2025). Analysis of the potential resource, environmental and economic impacts of EU battery and waste battery regulations on China's lithium-ion battery industry. Resources, Conservation and Recycling, 219, 108314. https://doi.org/10.1016/j.resconrec.2025.108314
  • 23. Lo Sardo, C., Cacciatore, G., Cappuccino, G., Aiello, D., & Napoli, A. (2025). Spent Lithium Battery Recycling: Traditional and Innova-tive Approaches. Processes, 13(4), 950. https://doi.org/10.3390/pr13040950
  • 24. Luo, Y., Deng, Y., Shi, H., Yang, H., Yin, C., & Ou, L. (2024). Green and efficient recycling method for spent Ni–Co–Mn lithium batteries utilizing multifunctional deep eutectic solvents. Journal of Environmental Management, 351, 119814. https://doi.org/10.1016/j.jenvman.2023.119814
  • 25. Machala, M. L., Chen, X., Bunke, S. P., Forbes, G., Yegizbay, A., de Chalendar, J. A., ... & Tarpeh, W. A. (2025). Life cycle compari-son of industrial-scale lithium-ion battery recycling and mining sup-ply chains. Nature Communications, 16(1), 988. https://doi.org/10.1038/s41467-025-56063-x
  • 26. Majid, M. A., & Ahmed, A. (2024). Advances in electric vehicles for a self-reliant energy ecosystem and powering a sustainable future in India. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 10, 100753. https://doi.org/10.1016/j.prime.2024.100753
  • 27. Meegoda, J., Charbel, G., & Watts, D. (2024). Second life of used lithium-ion batteries from electric vehicles in the USA. Environments, 11(5), 97. https://doi.org/10.3390/environments11050097
  • 28. Mohammadi, F., & Saif, M. (2023). A comprehensive overview of electric vehicle batteries market. e-Prime-Advances in Electrical Engi-neering, Electronics and Energy, 3, 100127. https://doi.org/10.1016/j.prime.2023.100127
  • 29. Naor, M. (2022). Tesla’s circular economy strategy to recycle, reduce, reuse, repurpose and recover batteries. In Recycling Strategy and Challenges Associated with Waste Management Towards Sustaining the World. London, UK: IntechOpen.
  • 30. Rezaei, M., Nekahi, A., MR, A. K., Nizami, A., Li, X., Deng, S., ... & Zaghib, K. (2025). A review of lithium-ion battery recycling for enabling a circular economy. Journal of Power Sources, 630, 236157. https://doi.org/10.1016/j.jpowsour.2024.236157
  • 31. Rinne, M., Lappalainen, H., & Lundström, M. (2025). Evaluating the possibilities and limitations of the pyrometallurgical recycling of waste Li-ion batteries using simulation and life cycle assessment. Green Chemistry, 27(9), 2522-2537. https://doi.org/10.1039/D4GC05409A
  • 32. Bai, Y., Muralidharan, N., Sun, Y. K., Passerini, S., Whittingham, M. S., & Belharouak, I. (2020). Energy and environmental aspects in re-cycling lithium-ion batteries: Concept of Battery Identity Global Passport. Materials Today, 41, 304-315. https://doi.org/10.1016/j.mattod.2020.09.001
  • 33. Stegemann, L., & Gutsch, M. (2025). Environmental Impacts of Py-ro-and Hydrometallurgical Recycling for Lithium-Ion Batteries-A Review. Journal of Business Chemistry, 22(1). https://doi.org/10.17879/43998523309
  • 34. Brückner, L., Frank, J., & Elwert, T. (2020). Industrial recycling of lithium-ion batteries—a critical review of metallurgical process routes. Metals, 10(8), 1107. https://doi.org/10.3390/met10081107
  • 35. Roy, J. J., Cao, B., & Madhavi, S. (2021). A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Chemosphere, 282, 130944. https://doi.org/10.1016/j.chemosphere.2021.130944
  • 36. Sato, F. E. K., & Nakata, T. (2019). Recoverability analysis of critical materials from electric vehicle lithium-ion batteries through a dynamic fleet-based approach for Japan. Sustainability, 12(1), 147. https://doi.org/10.3390/su12010147
  • 37. Scott, S., Islam, Z., Allen, J., Yingnakorn, T., Alflakian, A., Hatha-way, J., ... & Abbott, A. P. (2023). Designing lithium-ion batteries for recycle: The role of adhesives. Next Energy, 1(2), 100023. https://doi.org/10.1016/j.nxener.2023.100023
  • 38. Srinivasan, S., Shanthakumar, S., & Ashok, B. (2025). Sustainable lithium-ion battery recycling: A review on technologies, regulatory approaches and future trends. Energy Reports, 13, 789-812. https://doi.org/10.1016/j.egyr.2024.12.043
  • 39. Thompson, D. L., Hartley, J. M., Lambert, S. M., Shiref, M., Harper, G. D., Kendrick, E., ... & Abbott, A. P. (2020). The importance of design in lithium ion battery recycling–a critical review. Green Chem-istry, 22(22), 7585-7603. https://doi.org/10.1039/D0GC02745F
  • 40. Vega-Muratalla, V. O., Ramírez-Márquez, C., Lira-Barragán, L. F., & Ponce-Ortega, J. M. (2024). Review of lithium as a strategic re-source for electric vehicle battery production: Availability, extraction, and future prospects. Resources, 13(11), 148. https://doi.org/10.3390/resources13110148
  • 41. Vehovszky, B., Kovács, L., Weltsch, Z., & Magyar, F. (2024). Con-cepts and Examples of Carbon-Free, Self-Sufficient Local Energy Systems. Chemical Engineering Transactions, 114, 931-936. https://doi.org/10.3303/CET24114156
  • 42. Goudarzi, J., Chen, Z., Zhang, G., Hu, J., Zaghib, K., Deng, S., ... & Avalos Ramirez, A. (2025). Sustainable recovery of critical metals from spent lithium-ion batteries using deep eutectic solvents. Batteries, 11(9), 340. https://doi.org/10.3390/batteries11090340
  • 43. Zhou, Z., Lei, F., Dai, M., Zheng, F., Qiao, Y., Chang, J., ... & Yang, X. (2025). Closed-loop cathode recycling of spent lithium batteries via green deep eutectic solvents and oxalic acid. Journal of Hazardous Materials, 139224. https://doi.org/10.1016/j.jhazmat.2025.139224
  • 44. Vinayak, A. K., Xu, Z., Li, G., & Wang, X. (2023). Current trends in sourcing, recycling, and regeneration of spent lithium-ion batteries—A review. Renewables, 1(3), 294-315. https://doi.org/10.31635/renewables.023.202200008
  • 45. Xiao, J., Jiang, C., & Wang, B. (2023). A review on dynamic recy-cling of electric vehicle battery: disassembly and echelon utilization. Batteries, 9(1), 57. https://doi.org/10.3390/batteries9010057
  • 46. Zahoor, A., Kun, R., Mao, G., Farkas, F., Sápi, A., & Kónya, Z. (2024). Urgent needs for second life using and recycling design of wasted electric vehicles (EVs) lithium-ion battery: a scientometric analysis. Environmental Science and Pollution Research, 31(30), 43152-43173. https://doi.org/10.1007/s11356-024-33979-3
  • 47. Zanoletti, A., Carena, E., Ferrara, C., & Bontempi, E. (2024). A re-view of lithium-ion battery recycling: technologies, sustainability, and open issues. Batteries, 10(1), 38. https://doi.org/10.3390/batteries10010038
There are 47 citations in total.

Details

Primary Language English
Subjects Automotive Engineering (Other)
Journal Section Review Article
Authors

Tibor Cseke

Zoltán Weltsch 0000-0002-6366-8281

Submission Date September 25, 2025
Acceptance Date December 11, 2025
Publication Date December 28, 2025
Published in Issue Year 2025 Volume: 5 Issue: 1st Future of Vehicles Conf.

Cite

APA Cseke, T., & Weltsch, Z. (2025). Sustainable Battery Management in the Age of Electromobility. Engineering Perspective, 5(1st Future of Vehicles Conf.), 18-27. https://doi.org/10.64808/engineeringperspective.1791151