Research Article
BibTex RIS Cite
Year 2019, Volume: 53 Issue: 1, 32 - 37, 31.01.2019

Abstract

References

  • Kopperud SE, Tveit AB, Gaarden T, Sandvik L, Espelid I. Longevity of posterior dental restorations and reasons for failure. Eur J Oral Sci 2012;120(6):539-548. [CrossRef ]
  • Mantri SP, Mantri SS. Management of shrinkage stresses in direct restorative light-cured composites: a review. J Esthet Restor Dent 2013;25(5):305-13. [CrossRef ]
  • Rosatto CM, Bicalho AA, Verissimo C, Braganca GF, Rodrigues MP, Tantbirojn D, Versluis A, Soares CJ. Mechanical properties, shrinkage stress, cuspal strain and fracture resistance of molars restored with bulk-fill composites and incremental filling technique. J Dent 2015;43(12):1519-28. [CrossRef ]
  • Soares CJ, Bicalho AA, Verissimo C, Soares P, Tantbirojn D, Versluis A. Delayed Photo-activation Effects on Mechanical Properties of Dual Cured Resin Cements and Finite Element Analysis of Shrinkage Stresses in Teeth Restored With Ceramic Inlays. Oper Dent 2016;41(5):491-500. [CrossRef ]
  • Imazato S, Ma S, Chen J-h, Xu HHK. Therapeutic polymers for dental adhesives: Loading resins with bio-active components. Dental Materials 2014;30(1):97-104. [CrossRef ]
  • Imazato S. Bio-active restorative materials with antibacterial effects: new dimension of innovation in restorative dentistry. Dent Mater J 2009;28(1):11-9. [CrossRef ]
  • Imazato S, Kinomoto Y, Tarumi H, Ebisu S, R. Tay F. Antibacterial activity and bonding characteristics of an adhesive resin containing antibacterial monomer MDPB. Dental Materials 2003;19(4):313-19. [CrossRef ]
  • Melo MA, Cheng L, Weir MD, Hsia RC, Rodrigues LK, Xu HH. Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles. J Biomed Mater Res B Appl Biomater 2013;101(4):620-9. [CrossRef ]
  • Melo MAS, Cheng L, Zhang K, Weir MD, Rodrigues LKA, Xu HHK. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dental Materials 2013;29(2):199-210. [CrossRef ]
  • Hahnel S, Wastl DS, Schneider-Feyrer S, Giessibl FJ, Brambilla E, Cazzaniga G, Ionescu A. Streptococcus mutans biofilm formation and release of fluoride from experimental resinbased composites depending on surface treatment and S-PRG filler particle fraction. J Adhes Dent 2014;16(4):313-21.
  • Suzuki N, Yoneda M, Haruna K, Masuo Y, Nishihara T, Nakanishi K, Yamada K, Fujimoto A, Hirofuji T. Effects of S-PRG eluate on oral biofilm and oral malodor. Arch Oral Biol 2014;59(4):407-13. [CrossRef ]
  • Fujimoto Y, Iwasa M, Murayama R, Miyazaki M, Nagafuji A, Nakatsuka T. Detection of ions released from S-PRG fillers and their modulation effect. Dent Mater J 2010;29(4):392-7. [CrossRef ]
  • Ito S, Iijima M, Hashimoto M, Tsukamoto N, Mizoguchi I, Saito T. Effects of surface pre-reacted glass-ionomer fillers on mineral induction by phosphoprotein. J Dent 2011;39(1):72-9. [CrossRef ]
  • Mjor IA, Shen C, Eliasson ST, Richter S. Placement and replacement of restorations in general dental practice in Iceland. Oper Dent 2002;27(2):117-23.
  • Nedeljkovic I, Teughels W, De Munck J, Van Meerbeek B, Van Landuyt KL. Is secondary caries with composites a materialbased problem? Dental Materials 2015;31(11):e247-e277. [CrossRef ]
  • Gordan VV, Riley Iii JL, Geraldeli S, Rindal DB, Qvist V, Fellows JL, Kellum HP, Gilbert GH. Repair or replacement of defective restorations by dentists in The Dental Practice-Based Research Network. The Journal of the American Dental Association 2012;143(6):593-601. [CrossRef ]
  • Opdam NJM, Bronkhorst EM, Roeters JM, Loomans BAC. A retrospective clinical study on longevity of posterior composite and amalgam restorations. Dental Materials 2007;23(1):2-8. [CrossRef ]
  • Roumanas ED. The Frequency of Replacement of Dental Restorations May Vary Based on a Number of Variables, Including Type of Material, Size of the Restoration, and Caries Risk of the Patient. Journal of Evidence Based Dental Practice 2010;10(1):23-4. [CrossRef ]
  • Soncini JA, Maserejian NN, Trachtenberg F, Tavares M, Hayes C. The longevity of amalgam versus compomer/composite restorations in posterior primary and permanent teeth: Findings From the New England Children’s Amalgam Trial. The Journal of the American Dental Association 2007;138(6):763-72. [CrossRef ]
  • Sunnegårdh-Grönberg K, van Dijken JWV, Funegård U, Lindberg A, Nilsson M. Selection of dental materials and longevity of replaced restorations in Public Dental Health clinics in northern Sweden. Journal of Dentistry 2009;37(9):673-8. [CrossRef ]
  • Alani AH, Toh CG. Detection of microleakage around dental restorations: a review. Oper Dent 1997;22(4):173-85.
  • Zhou Y, Shimada Y, Matin K, Sadr A, Sumi Y, Tagami J. Assessment of bacterial demineralization around composite restorations using swept-source optical coherence tomography (SS-OCT). Dental Materials 2016;32(9):1177-88. [CrossRef ]
  • Jokstad A. Secondary caries and microleakage. Dental Materials 2016;32(1):11-25. [CrossRef ]
  • Gonzalez-Cabezas C, Li Y, Gregory RL, Stookey GK. Distribution of cariogenic bacteria in carious lesions around tooth-colored restorations. Am J Dent 2002;15(4):248-51.
  • Matalon S, Weiss EI, Gorfil C, Noy D, Slutzky H. In vitro antibacterial evaluation of flowable restorative materials. Quintessence Int 2009;40(4):327-32.
  • Beyth N, Domb AJ, Weiss EI. An in vitro quantitative antibacterial analysis of amalgam and composite resins. J Dent 2007;35(3):201-6. [CrossRef ]
  • Morrier JJ, Suchett-Kaye G, Nguyen D, Rocca JP, Blanc-Benon J, Barsotti O. Antimicrobial activity of amalgams, alloys and their elements and phases. Dent Mater 1998;14(2):150-7. [CrossRef ]
  • Simmons JO, Meyers EJ, Lien W, Banfield RL, Roberts HW, Vandewalle KS. Effect of surface treatments on the mechanical properties and antimicrobial activity of desiccated glass ionomers. Dental Materials 2016;32(11):1343-1351. [CrossRef ]
  • Beyth N, Farah S, Domb AJ, Weiss EI. Antibacterial dental resin composites. Reactive and Functional Polymers 2014;75:81-8. [CrossRef ]
  • Chambers C, Stewart SB, Su B, Jenkinson HF, Sandy JR, Ireland AJ. Silver doped titanium dioxide nanoparticles as antimicrobial additives to dental polymers. Dental Materials 2017;33(3):e115-e123. [CrossRef ]
  • He J, Söderling E, Lassila LVJ, Vallittu PK. Preparation of antibacterial and radio-opaque dental resin with new polymerizable quaternary ammonium monomer. Dental Materials 2015;31(5):575-82. [CrossRef ]
  • Tavassoli Hojati S, Alaghemand H, Hamze F, Ahmadian Babaki F, Rajab-Nia R, Rezvani MB, Kaviani M, Atai M. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dental Materials 2013;29(5):495-505. [CrossRef ]
  • Wu J, Weir MD, Melo MAS, Xu HHK. Development of novel selfhealing and antibacterial dental composite containing calcium phosphate nanoparticles. Journal of Dentistry 2015;43(3):317- 26. [CrossRef ]
  • Mehdawi IM, Pratten J, Spratt DA, Knowles JC, Young AM. High strength re-mineralizing, antibacterial dental composites with reactive calcium phosphates. Dental Materials 2013;29(4):473- 84. [CrossRef ]
  • Cheng L, Weir MD, Zhang K, Arola DD, Zhou X, Xu HH. Dental primer and adhesive containing a new antibacterial quaternary ammonium monomer dimethylaminododecyl methacrylate. J Dent 2013;41(4):345-55. [CrossRef ]
  • Zhang K, Cheng L, Imazato S, Antonucci JM, Lin NJ, Lin-Gibson S, Bai Y, Xu HH. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties. J Dent 2013;41(5):464-74. [CrossRef ]
  • Esteves CM, Ota-Tsuzuki C, Reis AF, Rodrigues JA. Antibacterial activity of various self-etching adhesive systems against oral streptococci. Oper Dent 2010;35(4):448-53. [CrossRef ] properties of self-etching dental adhesive systems. The Journal of the American Dental Association 2007;138(3):349-54. [CrossRef ]
  • Ohmori K, Maeda N, Kohno A. Evaluation of antibacterial activity of three dentin primers using an in vitro tooth model. Oper Dent 1999;24(5):279-85.
  • Özer F, Karakaya Ş, Ünlü N, Erganiş O, Kav K, Imazato S. Comparison of antibacterial activity of two dentin bonding systems using agar well technique and tooth cavity model. Journal of Dentistry 2003;31(2):111-16. [CrossRef ]
  • Gondim JO, Duque C, Hebling J, Giro EM. Influence of human dentine on the antibacterial activity of self-etching adhesive systems against cariogenic bacteria. J Dent 2008;36(4):241-48. [CrossRef ]
  • Cobanoglu N, Ozer F, Demirci M, Erganis O, Imazato S. Bacterial penetration of restored cavities using two self-etching bonding systems. Eur J Dent 2014;8(2):166-71. [CrossRef ]
  • Demirel G, Gür G, Eryılmaz M, Altanlar N. The effects of self-etch bio-active dental adhesive systems on bacterial microleakage. Journal of Adhesion Science and Technology 2018;32(10):1044- 54. [CrossRef ]
  • Eldeniz AU, Hadimli HH, Ataoglu H, Orstavik D. Antibacterial effect of selected root-end filling materials. J Endod 2006;32(4):345-349. [CrossRef ]
  • Weiss EI, Shalhav M, Fuss Z. Assessment of antibacterial activity of endodontic sealers by a direct contact test. Endod Dent Traumatol 1996;12(4):179-84. [CrossRef ]
  • Zhang H, Shen Y, Ruse ND, Haapasalo M. Antibacterial activity of endodontic sealers by modified direct contact test against Enterococcus faecalis. J Endod 2009;35(7):1051-5. [CrossRef ]
  • André CB, Gomes BPFA, Duque TM, Rosalen PL, Chan DCN, Ambrosano GMB, Giannini M. Antimicrobial activity, effects on Streptococcus mutans biofilm and interfacial bonding of adhesive systems with and without antibacterial agent. International Journal of Adhesion and Adhesives 2017;72:123-9. [CrossRef ]
  • Kuramoto A, Imazato S, Walls AW, Ebisu S. Inhibition of root caries progression by an antibacterial adhesive. J Dent Res 2005;84(1):89-93. [CrossRef ]
  • Dionysopoulos D, Koliniotou-Koumpia E, Helvatzoglou- Antoniades M, Kotsanos N. Fluoride release and recharge abilities of contemporary fluoride-containing restorative materials and dental adhesives. Dent Mater J 2013;32(2):296- 304. [CrossRef ]
  • Han L, Okamoto A, Fukushima M, Okiji T. Evaluation of a new fluoride-releasing one-step adhesive. Dent Mater J 2006;25(3):509-5. [CrossRef ]

In vitro antibacterial activity of self-etch bio-active dental adhesives after artificial aging

Year 2019, Volume: 53 Issue: 1, 32 - 37, 31.01.2019

Abstract

Purpose
The aims to evaluate the antibacterial effect of different bioactive component
containing dental adhesives before and after artificial aging.
Materials and Methods
Two bio-active adhesives; Clearfil Protect Bond and FL Bond II, two non-bioactive
adhesives, Clearfil SE Bond and Clearfil S3 Bond were used for this study.
Antibacterial activities of the fresh and aged samples against Streptococcus mutans
were investigated with Direct Contact Test. Data were analyzed with Kruskal Wallis
and Mann Whitney U multiple comparison tests.
Results
For fresh samples FL Bond II and Clearfil Protect Bond exhibit similar antibacterial
effect but Clearfil Protect Bond showed significantly higher antibacterial effect after
aging the samples (p < 0.05).
Conclusions
The incorporation of bio-active antibacterial components into adhesive systems
may be considered as a fundamental component in inhibiting residual Streptococcus
mutans when considering the antibacterial effect of fresh samples of bio-active
adhesives.

References

  • Kopperud SE, Tveit AB, Gaarden T, Sandvik L, Espelid I. Longevity of posterior dental restorations and reasons for failure. Eur J Oral Sci 2012;120(6):539-548. [CrossRef ]
  • Mantri SP, Mantri SS. Management of shrinkage stresses in direct restorative light-cured composites: a review. J Esthet Restor Dent 2013;25(5):305-13. [CrossRef ]
  • Rosatto CM, Bicalho AA, Verissimo C, Braganca GF, Rodrigues MP, Tantbirojn D, Versluis A, Soares CJ. Mechanical properties, shrinkage stress, cuspal strain and fracture resistance of molars restored with bulk-fill composites and incremental filling technique. J Dent 2015;43(12):1519-28. [CrossRef ]
  • Soares CJ, Bicalho AA, Verissimo C, Soares P, Tantbirojn D, Versluis A. Delayed Photo-activation Effects on Mechanical Properties of Dual Cured Resin Cements and Finite Element Analysis of Shrinkage Stresses in Teeth Restored With Ceramic Inlays. Oper Dent 2016;41(5):491-500. [CrossRef ]
  • Imazato S, Ma S, Chen J-h, Xu HHK. Therapeutic polymers for dental adhesives: Loading resins with bio-active components. Dental Materials 2014;30(1):97-104. [CrossRef ]
  • Imazato S. Bio-active restorative materials with antibacterial effects: new dimension of innovation in restorative dentistry. Dent Mater J 2009;28(1):11-9. [CrossRef ]
  • Imazato S, Kinomoto Y, Tarumi H, Ebisu S, R. Tay F. Antibacterial activity and bonding characteristics of an adhesive resin containing antibacterial monomer MDPB. Dental Materials 2003;19(4):313-19. [CrossRef ]
  • Melo MA, Cheng L, Weir MD, Hsia RC, Rodrigues LK, Xu HH. Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles. J Biomed Mater Res B Appl Biomater 2013;101(4):620-9. [CrossRef ]
  • Melo MAS, Cheng L, Zhang K, Weir MD, Rodrigues LKA, Xu HHK. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dental Materials 2013;29(2):199-210. [CrossRef ]
  • Hahnel S, Wastl DS, Schneider-Feyrer S, Giessibl FJ, Brambilla E, Cazzaniga G, Ionescu A. Streptococcus mutans biofilm formation and release of fluoride from experimental resinbased composites depending on surface treatment and S-PRG filler particle fraction. J Adhes Dent 2014;16(4):313-21.
  • Suzuki N, Yoneda M, Haruna K, Masuo Y, Nishihara T, Nakanishi K, Yamada K, Fujimoto A, Hirofuji T. Effects of S-PRG eluate on oral biofilm and oral malodor. Arch Oral Biol 2014;59(4):407-13. [CrossRef ]
  • Fujimoto Y, Iwasa M, Murayama R, Miyazaki M, Nagafuji A, Nakatsuka T. Detection of ions released from S-PRG fillers and their modulation effect. Dent Mater J 2010;29(4):392-7. [CrossRef ]
  • Ito S, Iijima M, Hashimoto M, Tsukamoto N, Mizoguchi I, Saito T. Effects of surface pre-reacted glass-ionomer fillers on mineral induction by phosphoprotein. J Dent 2011;39(1):72-9. [CrossRef ]
  • Mjor IA, Shen C, Eliasson ST, Richter S. Placement and replacement of restorations in general dental practice in Iceland. Oper Dent 2002;27(2):117-23.
  • Nedeljkovic I, Teughels W, De Munck J, Van Meerbeek B, Van Landuyt KL. Is secondary caries with composites a materialbased problem? Dental Materials 2015;31(11):e247-e277. [CrossRef ]
  • Gordan VV, Riley Iii JL, Geraldeli S, Rindal DB, Qvist V, Fellows JL, Kellum HP, Gilbert GH. Repair or replacement of defective restorations by dentists in The Dental Practice-Based Research Network. The Journal of the American Dental Association 2012;143(6):593-601. [CrossRef ]
  • Opdam NJM, Bronkhorst EM, Roeters JM, Loomans BAC. A retrospective clinical study on longevity of posterior composite and amalgam restorations. Dental Materials 2007;23(1):2-8. [CrossRef ]
  • Roumanas ED. The Frequency of Replacement of Dental Restorations May Vary Based on a Number of Variables, Including Type of Material, Size of the Restoration, and Caries Risk of the Patient. Journal of Evidence Based Dental Practice 2010;10(1):23-4. [CrossRef ]
  • Soncini JA, Maserejian NN, Trachtenberg F, Tavares M, Hayes C. The longevity of amalgam versus compomer/composite restorations in posterior primary and permanent teeth: Findings From the New England Children’s Amalgam Trial. The Journal of the American Dental Association 2007;138(6):763-72. [CrossRef ]
  • Sunnegårdh-Grönberg K, van Dijken JWV, Funegård U, Lindberg A, Nilsson M. Selection of dental materials and longevity of replaced restorations in Public Dental Health clinics in northern Sweden. Journal of Dentistry 2009;37(9):673-8. [CrossRef ]
  • Alani AH, Toh CG. Detection of microleakage around dental restorations: a review. Oper Dent 1997;22(4):173-85.
  • Zhou Y, Shimada Y, Matin K, Sadr A, Sumi Y, Tagami J. Assessment of bacterial demineralization around composite restorations using swept-source optical coherence tomography (SS-OCT). Dental Materials 2016;32(9):1177-88. [CrossRef ]
  • Jokstad A. Secondary caries and microleakage. Dental Materials 2016;32(1):11-25. [CrossRef ]
  • Gonzalez-Cabezas C, Li Y, Gregory RL, Stookey GK. Distribution of cariogenic bacteria in carious lesions around tooth-colored restorations. Am J Dent 2002;15(4):248-51.
  • Matalon S, Weiss EI, Gorfil C, Noy D, Slutzky H. In vitro antibacterial evaluation of flowable restorative materials. Quintessence Int 2009;40(4):327-32.
  • Beyth N, Domb AJ, Weiss EI. An in vitro quantitative antibacterial analysis of amalgam and composite resins. J Dent 2007;35(3):201-6. [CrossRef ]
  • Morrier JJ, Suchett-Kaye G, Nguyen D, Rocca JP, Blanc-Benon J, Barsotti O. Antimicrobial activity of amalgams, alloys and their elements and phases. Dent Mater 1998;14(2):150-7. [CrossRef ]
  • Simmons JO, Meyers EJ, Lien W, Banfield RL, Roberts HW, Vandewalle KS. Effect of surface treatments on the mechanical properties and antimicrobial activity of desiccated glass ionomers. Dental Materials 2016;32(11):1343-1351. [CrossRef ]
  • Beyth N, Farah S, Domb AJ, Weiss EI. Antibacterial dental resin composites. Reactive and Functional Polymers 2014;75:81-8. [CrossRef ]
  • Chambers C, Stewart SB, Su B, Jenkinson HF, Sandy JR, Ireland AJ. Silver doped titanium dioxide nanoparticles as antimicrobial additives to dental polymers. Dental Materials 2017;33(3):e115-e123. [CrossRef ]
  • He J, Söderling E, Lassila LVJ, Vallittu PK. Preparation of antibacterial and radio-opaque dental resin with new polymerizable quaternary ammonium monomer. Dental Materials 2015;31(5):575-82. [CrossRef ]
  • Tavassoli Hojati S, Alaghemand H, Hamze F, Ahmadian Babaki F, Rajab-Nia R, Rezvani MB, Kaviani M, Atai M. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dental Materials 2013;29(5):495-505. [CrossRef ]
  • Wu J, Weir MD, Melo MAS, Xu HHK. Development of novel selfhealing and antibacterial dental composite containing calcium phosphate nanoparticles. Journal of Dentistry 2015;43(3):317- 26. [CrossRef ]
  • Mehdawi IM, Pratten J, Spratt DA, Knowles JC, Young AM. High strength re-mineralizing, antibacterial dental composites with reactive calcium phosphates. Dental Materials 2013;29(4):473- 84. [CrossRef ]
  • Cheng L, Weir MD, Zhang K, Arola DD, Zhou X, Xu HH. Dental primer and adhesive containing a new antibacterial quaternary ammonium monomer dimethylaminododecyl methacrylate. J Dent 2013;41(4):345-55. [CrossRef ]
  • Zhang K, Cheng L, Imazato S, Antonucci JM, Lin NJ, Lin-Gibson S, Bai Y, Xu HH. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties. J Dent 2013;41(5):464-74. [CrossRef ]
  • Esteves CM, Ota-Tsuzuki C, Reis AF, Rodrigues JA. Antibacterial activity of various self-etching adhesive systems against oral streptococci. Oper Dent 2010;35(4):448-53. [CrossRef ] properties of self-etching dental adhesive systems. The Journal of the American Dental Association 2007;138(3):349-54. [CrossRef ]
  • Ohmori K, Maeda N, Kohno A. Evaluation of antibacterial activity of three dentin primers using an in vitro tooth model. Oper Dent 1999;24(5):279-85.
  • Özer F, Karakaya Ş, Ünlü N, Erganiş O, Kav K, Imazato S. Comparison of antibacterial activity of two dentin bonding systems using agar well technique and tooth cavity model. Journal of Dentistry 2003;31(2):111-16. [CrossRef ]
  • Gondim JO, Duque C, Hebling J, Giro EM. Influence of human dentine on the antibacterial activity of self-etching adhesive systems against cariogenic bacteria. J Dent 2008;36(4):241-48. [CrossRef ]
  • Cobanoglu N, Ozer F, Demirci M, Erganis O, Imazato S. Bacterial penetration of restored cavities using two self-etching bonding systems. Eur J Dent 2014;8(2):166-71. [CrossRef ]
  • Demirel G, Gür G, Eryılmaz M, Altanlar N. The effects of self-etch bio-active dental adhesive systems on bacterial microleakage. Journal of Adhesion Science and Technology 2018;32(10):1044- 54. [CrossRef ]
  • Eldeniz AU, Hadimli HH, Ataoglu H, Orstavik D. Antibacterial effect of selected root-end filling materials. J Endod 2006;32(4):345-349. [CrossRef ]
  • Weiss EI, Shalhav M, Fuss Z. Assessment of antibacterial activity of endodontic sealers by a direct contact test. Endod Dent Traumatol 1996;12(4):179-84. [CrossRef ]
  • Zhang H, Shen Y, Ruse ND, Haapasalo M. Antibacterial activity of endodontic sealers by modified direct contact test against Enterococcus faecalis. J Endod 2009;35(7):1051-5. [CrossRef ]
  • André CB, Gomes BPFA, Duque TM, Rosalen PL, Chan DCN, Ambrosano GMB, Giannini M. Antimicrobial activity, effects on Streptococcus mutans biofilm and interfacial bonding of adhesive systems with and without antibacterial agent. International Journal of Adhesion and Adhesives 2017;72:123-9. [CrossRef ]
  • Kuramoto A, Imazato S, Walls AW, Ebisu S. Inhibition of root caries progression by an antibacterial adhesive. J Dent Res 2005;84(1):89-93. [CrossRef ]
  • Dionysopoulos D, Koliniotou-Koumpia E, Helvatzoglou- Antoniades M, Kotsanos N. Fluoride release and recharge abilities of contemporary fluoride-containing restorative materials and dental adhesives. Dent Mater J 2013;32(2):296- 304. [CrossRef ]
  • Han L, Okamoto A, Fukushima M, Okiji T. Evaluation of a new fluoride-releasing one-step adhesive. Dent Mater J 2006;25(3):509-5. [CrossRef ]
There are 49 citations in total.

Details

Primary Language English
Journal Section Original Research Articles
Authors

Gülbike Demirel 0000-0002-0828-0532

Müjde Eryılmaz This is me 0000-0003-3760-1996

Hande Şeberol This is me 0000-0001-5191-576X

Gürkan Gür This is me 0000-0002-5592-0459

Publication Date January 31, 2019
Submission Date November 17, 2018
Published in Issue Year 2019 Volume: 53 Issue: 1

Cite

EndNote Demirel G, Eryılmaz M, Şeberol H, Gür G (January 1, 2019) In vitro antibacterial activity of self-etch bio-active dental adhesives after artificial aging. European Oral Research 53 1 32–37.